1,986 research outputs found

    Thermal diffusion of supersonic solitons in an anharmonic chain of atoms

    Full text link
    We study the non-equilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by adding noise, delta-correlated in time and space, and damping to the set of discrete equations of motion. Working in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system which fully confirm the predictions of our analytical calculations, namely noise-induced superdiffusive behavior which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion behavior is observed for very low-energy solitons where the noise-induced phonons also make a significant contribution to the soliton diffusion.Comment: Submitted to PRE. Changes made: New simulations with a different method of soliton detection. The results and conclusions are not different from previous version. New appendixes containing information about the system energy and soliton profile

    LAGOVirtual: A Collaborative Environment for the Large Aperture GRB Observatory

    Full text link
    We present the LAGOVirtual Project: an ongoing project to develop platform to collaborate in the Large Aperture GRB Observatory (LAGO). This continental-wide observatory is devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts, by using the single particle technique in arrays of Water Cherenkov Detectors (WCD) at high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). This platform will allow LAGO collaboration to share data, and computer resources through its different sites. This environment has the possibility to generate synthetic data by simulating the showers through AIRES application and to store/preserve distributed data files collected by the WCD at the LAGO sites. The present article concerns the implementation of a prototype of LAGO-DR adapting DSpace, with a hierarchical structure (i.e. country, institution, followed by collections that contain the metadata and data files), for the captured/simulated data. This structure was generated by using the community, sub-community, collection, item model; available at the DSpace software. Each member institution-country of the project has the appropriate permissions on the system to publish information (descriptive metadata and associated data files). The platform can also associate multiple files to each item of data (data from the instruments, graphics, postprocessed-data, etc.).Comment: Second EELA-2 Conference Choroni, Venezuela, November 25th to 27th 200

    An Architecture for Querying Business Process, Business Process Instances, and Business Data Models

    Get PDF
    Business data are usually managed by means of business processes during process instances. These viewpoints (business, instances and data) are strongly related because the life-cycle of business data objects need to be aligned with the business process and process instance models. However, current approaches do not provide a mechanism to integrate these three viewpoints nor to query them all together while maintaining the information in the distributed, heterogeneous systems where they have been created. In this paper, we propose the integration of the business process, business process instance, and business data models by using their metamodels and also an architecture to support this integration. The goal of this integration is to make the most of the three models and the technologies that support them in an isolated way. In our approach, it is not necessary to change the source data formats nor transforming them into a common one. Furthermore, the proposed architecture allows us to query the three models even though they come from three di�erent technologies

    Molecular Fountain

    Get PDF
    The resolution of any spectroscopic or interferometric experiment is ultimately limited by the total time a particle is interrogated. We here demonstrate the first molecular fountain, a development which permits hitherto unattainably long interrogation times with molecules. In our experiments, ammonia molecules are decelerated and cooled using electric fields, launched upwards with a velocity between 1.4 and 1.9\,m/s and observed as they fall back under gravity. A combination of quadrupole lenses and bunching elements is used to shape the beam such that it has a large position spread and a small velocity spread (corresponding to a transverse temperature of <<10\,μ\muK and a longitudinal temperature of <<1\,μ\muK) when the molecules are in free fall, while being strongly focused at the detection region. The molecules are in free fall for up to 266\,milliseconds, making it possible to perform sub-Hz measurements in molecular systems and paving the way for stringent tests of fundamental physics theories

    Summary of OS Operations

    Get PDF
    This deliverable provides an overview of the OS operations during the data collection phase. It contains the vehicles instrumentation towards the start of full-scale operations, the operational tasks involved during the data collection to monitor the vehicles, the drivers and the data quality, the final stage including the de-installation and the exit questionnaire collection and an overview of the final sample and total data collected per OS and per vehicle type. The deliverable concludes with the summary of the learned lessons, in regards to recruitment, instrumentation and data collection

    Recombination reduction on lead halide perovskite solar cells based on low temperature synthesized hierarchical TiO2 nanorods

    Get PDF
    Intensive research on the electron transport material (ETM) has been pursued to improve the efficiency of perovskite solar cells (PSCs) and decrease their cost. More importantly, the role of the ETM layer is not yet fully understood, and research on new device architectures is still needed. Here, we report the use of three-dimensional (3D) TiO2 with a hierarchical architecture based on rutile nanorods (NR) as photoanode material for PSCs. The proposed hierarchical nanorod (HNR) films were synthesized by a two-step low temperature (180 °C) hydrothermal method, and consist of TiO2 nanorod trunks with optimal lengths of 540 nm and TiO2 nanobranches with lengths of 45 nm. Different device configurations were fabricated with TiO2 structures (compact layer, NR and HNR) and CH3NH3PbI3, using different synthetic routes, as the active material. PSCs based on HNR-CH3NH3PbI3 achieved the highest power conversion efficiency compared to PSCs with other TiO2 structures. This result can be ascribed mainly to lower charge recombination as determined by impedance spectroscopy. Furthermore, we have observed that the CH3NH3PbI3 perovskite deposited by the two-step route shows higher efficiency, surface coverage and infiltration within the structure of 3D HNR than the one-step CH3NH3PbI3−xClx perovskite.This work was supported by the Universitat Jaume I (project 12I361.01/1), the Spanish MINECO (project MAT2013-47192- C3-1-R), CONACYT-México (project CB-2010/153270) and UNAM (PAPIIT-IN1030

    The Large Aperture GRB Observatory

    Full text link
    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.Comment: 4 pages, proceeding of 31st ICRC 200
    • …
    corecore