7 research outputs found

    Soil nitrogen affects phosphorus recycling: foliar resorption and plant–soil feedbacks in a northern hardwood forest

    Get PDF
    Previous studies have attempted to link foliar resorption of nitrogen and phosphorus to their respective availabilities in soil, with mixed results. Based on resource optimization theory, we hypothesized that the foliar resorption of one element could be driven by the availability of another element. We tested various measures of soil N and P as predictors of N and P resorption in six tree species in 18 plots across six stands at the Bartlett Experimental Forest, New Hampshire, USA. Phosphorus resorption efficiency (P , 0.01) and proficiency (P ÂĽ 0.01) increased with soil N content to 30 cm depth, suggesting that trees conserve P based on the availability of soil N. Phosphorus resorption also increased with soil P content, which is difficult to explain based on single-element limitation, but follows from the correlation between soil N and soil P. The expected single-element relationships were evident only in the O horizon: P resorption was high where resin-available P was low in the Oe (P , 0.01 for efficiency, P , 0.001 for proficiency) and N resorption was high where potential N mineralization in the Oa was low (P , 0.01 for efficiency and 0.11 for proficiency). Since leaf litter is a principal source of N and P to the O horizon, low nutrient availability there could be a result rather than a cause of high resorption. The striking effect of soil N content on foliar P resorption is the first evidence of multiple-element control on nutrient resorption to be reported from an unmanipulated ecosystem

    Knowledge to Serve the City: Insights from an Emerging Knowledge-Action Network to Address Vulnerability and Sustainability in San Juan, Puerto Rico

    Get PDF
    This paper presents initial efforts to establish the San Juan Urban Long-Term Research Area Exploratory (ULTRA-Ex), a long-term program aimed at developing transdisciplinary social-ecological system (SES) research to address vulnerability and sustainability for the municipality of San Juan. Transdisciplinary approaches involve the collaborations between researchers, stakeholders, and citizens to produce socially-relevant knowledge and support decision-making. We characterize the transdisciplinary arrangement emerging in San Juan ULTRA-Ex as a knowledge-action network composed of multiple formal and informal actors (e.g., scientists, policymakers, civic organizations and other stakeholders) where knowledge, ideas, and strategies for sustainability are being produced, evaluated, and validated. We describe in this paper the on-the-ground social practices and dynamics that emerged from developing a knowledge-action network in our local context. Specifically, we present six social practices that were crucial to the development of our knowledge-action network: 1) understanding local framings; 2) analyzing existing knowledge-action systems in the city; 3) framing the social-ecological research agenda; 4) collaborative knowledge production and integration; 5) boundary objects and practices; and 6) synthesis, application, and adaptation. We discuss key challenges and ways to move forward in building knowledge-action networks for sustainability. Our hope is that the insights learned from this process will stimulate broader discussions on how to develop knowledge for urban sustainability, especially in tropical cities where these issues are under-explored

    State of the climate in 2010

    No full text
    Several large-scale climate patterns influenced climate conditions and weather patterns across the globe during 2010. The transition from a warm El Nino phase at the beginning of the year to a cool La Nina phase by July contributed to many notable events, ranging from record wetness across much of Australia to historically low Eastern Pacific basin and near-record high North Atlantic basin hurricane activity. The remaining five main hurricane basins experienced below-to well-below-normal tropical cyclone activity. The negative phase of the Arctic Oscillation was a major driver of Northern Hemisphere temperature patterns during 2009/10 winter and again in late 2010. It contributed to record snowfall and unusually low temperatures over much of northern Eurasia and parts of the United States, while bringing above-normal temperatures to the high northern latitudes. The February Arctic Oscillation Index value was the most negative since records began in 1950. The 2010 average global land and ocean surface temperature was among the two warmest years on record. The Arctic continued to warm at about twice the rate of lower latitudes. The eastern and tropical Pacific Ocean cooled about 1 C from 2009 to 2010, reflecting the transition from the 2009/10 El Nino to the 2010/11 La Nina. Ocean heat fluxes contributed to warm sea surface temperature anomalies in the North Atlantic and the tropical Indian and western Pacific Oceans. Global integrals of upper ocean heat content for the past several years have reached values consistently higher than for all prior times in the record, demonstrating the dominant role of the ocean in the Earth's energy budget. Deep and abyssal waters of Antarctic origin have also trended warmer on average since the early 1990s. Lower tropospheric temperatures typically lag ENSO surface fluctuations by two to four months, thus the 2010 temperature was dominated by the warm phase El Nino conditions that occurred during the latter half of 2009 and early 2010 and was second warmest on record. The stratosphere continued to be anomalously cool. Annual global precipitation over land areas was about five percent above normal. Precipitation over the ocean was drier than normal after a wet year in 2009. Overall, saltier (higher evaporation) regions of the ocean surface continue to be anomalously salty, and fresher (higher precipitation) regions continue to be anomalously fresh. This salinity pattern, which has held since at least 2004, suggests an increase in the hydrological cycle. Sea ice conditions in the Arctic were significantly different than those in the Antarctic during the year. The annual minimum ice extent in the Arctic reached in September was the third lowest on record since 1979. In the Antarctic, zonally averaged sea ice extent reached an all-time record maximum from mid-June through late August and again from mid-November through early December. Corresponding record positive Southern Hemisphere Annular Mode Indices influenced the Antarctic sea ice extents. Greenland glaciers lost more mass than any other year in the decade-long record. The Greenland Ice Sheet lost a record amount of mass, as the melt rate was the highest since at least 1958, and the area and duration of the melting was greater than any year since at least 1978. High summer air temperatures and a longer melt season also caused a continued increase in the rate of ice mass loss from small glaciers and ice caps in the Canadian Arctic. Coastal sites in Alaska show continuous permafrost warming and sites in Alaska, Canada, and Russia indicate more significant warming in relatively cold permafrost than in warm permafrost in the same geographical area. With regional differences, permafrost temperatures are now up to 2 C warmer than they were 20 to 30 years ago. Preliminary data indicate there is a high probability that 2010 will be the 20th consecutive year that alpine glaciers have lost mass. Atmospheric greenhouse gas concentrations continued to rise and ozone depleting substances continued to decrease. Carbon dioxide increased by 2.60 ppm in 2010, a rate above both the 2009 and the 1980-2010 average rates. The global ocean carbon dioxide uptake for the 2009 transition period from La Nina to El Nino conditions, the most recent period for which analyzed data are available, is estimated to be similar to the long-term average. The 2010 Antarctic ozone hole was among the lowest 20% compared with other years since 1990, a result of warmer-than-average temperatures in the Antarctic stratosphere during austral winter between mid-July and early September
    corecore