920 research outputs found

    Coherence of marine alien species biosecurity legislation: A study of England and Wales

    Get PDF
    The marine environment is particularly at risk from the intentional and unintentional introduction and spread of invasive alien species (IAS); preventing their introduction and spread from occurring is therefore, a key component in the on-going management of marine IAS. Ensuring legislation is coherent and consistent is essential to the success of managing the existing and future impacts of marine IAS. We explore the coherence (determined as consistency and interaction) of marine biosecurity legislation for IAS at different geopolitical scales. There was consistency between both the Bern Convention and Convention on Biological Diversity and European and national legislation that had been created in response. There was a lack of interaction evidenced by the Ballast Water Management Convention, which had not yet been transposed into regional (mainly European) or national legislation. Implementation measures such as legislation should be coherent as any failure in the chain could potentially weaken the overall effort to establish and maintain biosecurity and achieve behaviour change

    Automatic processing of multimodal tomography datasets

    Get PDF
    With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source

    A Co-Twin Control Study of the Association Between Bullying Victimization and Self-Harm and Suicide Attempt in Adolescence

    Get PDF
    PURPOSE: The aim of the study was to investigate the magnitude of an independent association between bullying victimization and self-harm and suicide attempt in adolescence after adjusting for unmeasured and measured confounding factors. METHODS: Using the Child and Adolescent Twin Study in Sweden, we examined twins born between 1994 and 1999 (n = 13,852). Twins self-reported bullying victimization at age 15 years and self-harm and suicide attempt at age 18 years. We created a factor score of 13 bullying items, on which self-harm and suicide attempt items were regressed in three models: (1) among unrelated individuals; (2) among co-twins, in which a twin exposed to more bullying was compared with his/her co-twin who was exposed to less; and (3) among co-twins while adjusting for indicators of childhood psychopathology. RESULTS: Among unrelated individuals, a one standard deviation increase in bullying victimization was associated with increased odds for self-harm (odds ratio [OR], 1.29 [95% confidence interval, 1.23-1.36]) and suicide attempt (OR, 1.68 [1.53-1.85]). Among co-twins, the odds attenuated for self-harm (OR, 1.19 [1.09-1.30]) and suicide attempt (OR, 1.39 [1.17-1.66]). Finally, when accounting for childhood psychopathology, there was a 14% (1.04-1.25) and 25% (1.03-1.52) relative increase in odds of self-harm and suicide attempt, respectively. CONCLUSIONS: The results suggest that bullying victimization was uniquely associated with self-harm and suicide attempt over and above the confounding because of unmeasured and measured factors (i.e., familial vulnerability and pre-existing psychopathy). However, magnitudes were small, suggesting that additional interventions and screenings are needed to address suicidality apart from bullying interventions

    Predation by Bears Drives Senescence in Natural Populations of Salmon

    Get PDF
    Classic evolutionary theory predicts that populations experiencing higher rates of environmentally caused (“extrinsic”) mortality should senesce more rapidly, but this theory usually neglects plausible relationships between an individual's senescent condition and its susceptibility to extrinsic mortality. We tested for the evolutionary importance of this condition dependence by comparing senescence rates among natural populations of sockeye salmon (Oncorhynchus nerka) subject to varying degrees of predation by brown bears (Ursus arctos). We related senescence rates in six populations to (1) the overall rate of extrinsic mortality, and (2) the degree of condition dependence in this mortality. Senescence rates were determined by modeling the mortality of individually-tagged breeding salmon at each site. The overall rate of extrinsic mortality was estimated as the long-term average of the annual percentage of salmon killed by bears. The degree of condition dependence was estimated as the extent to which bears killed salmon that exhibited varying degrees of senescence. We found that the degree of condition dependence in extrinsic mortality was very important in driving senescence: populations where bears selectively killed fish showing advanced senescence were those that senesced least rapidly. The overall rate of extrinsic mortality also contributed to among-population variation in senescence-but to a lesser extent. Condition-dependent susceptibility to extrinsic mortality should be incorporated more often into theoretical models and should be explicitly tested in natural populations

    Detection of metallic cobalt and chromium liver deposition following failed hip replacement using T2* and R2 magnetic resonance

    Get PDF
    BACKGROUND: Failed hip prostheses can cause elevated circulating cobalt and chromium levels, with rare reports of fatal systemic organ deposition, including cobalt cardiomyopathy. Although blood cobalt and chromium levels are easily measured, organ deposition is difficult to detect without invasive biopsy. The T2* magnetic resonance (MR) method is used to quantify tissue iron deposition, and plays an important role in the management of iron-loading conditions. Cobalt and chromium, like iron, also affect magnetism and are proposed MR contrast agents. CASE PRESENTATION: We describe a case of a 44-year-old male with a failed hip implant and very elevated blood cobalt and chromium levels. Despite normal cardiac MR findings, liver T2* and R2 values were abnormal, triggering tissue biopsy. Liver tissue analysis, including X-ray fluorescence, demonstrated heavy elemental cobalt and chromium deposition in macrophages, and no detectable iron. CONCLUSIONS: Our case demonstrates T2* and R2 quantification of liver metal deposition in a patient with a failed hip implant. Further work is needed to investigate the role of T2* and R2 MR in the detection of metal deposition from metal on metal hip prostheses

    Identifying the Origins of Microstructural Defects Such as Cracking within Ni‐Rich NMC811 Cathode Particles for Lithium‐Ion Batteries

    Get PDF
    The next generation of automotive lithium‐ion batteries may employ NMC811 materials; however, defective particles are of significant interest due to their links to performance loss. Here, it is demonstrated that even before operation, on average, one‐third of NMC811 particles experience some form of defect, increasing in severity near the separator interface. It is determined that defective particles can be detected and quantified using low resolution imaging, presenting a significant improvement for material statistics. Fluorescence and diffraction data reveal that the variation of Mn content within the NMC particles may correlate to crystallographic disordering, indicating that the mobility and dissolution of Mn may be a key aspect of degradation during initial cycling. This, however, does not appear to correlate with the severity of particle cracking, which when analyzed at high spatial resolutions, reveals cracking structures similar to lower Ni content NMC, suggesting that the disconnection and separation of neighboring primary particles may be due to electrochemical expansion/contraction, exacerbated by other factors such as grain orientation that are inherent in such polycrystalline materials. These findings can guide research directions toward mitigating degradation at each respective length‐scale: electrode sheets, secondary and primary particles, and individual crystals, ultimately leading to improved automotive ranges and lifetimes

    Multi-Dimensional Characterization of Battery Materials

    Get PDF
    Demand for low carbon energy storage has highlighted the importance of imaging techniques for the characterization of electrode microstructures to determine key parameters associated with battery manufacture, operation, degradation, and failure both for next generation lithium and other novel battery systems. Here, recent progress and literature highlights from magnetic resonance, neutron, X-ray, focused ion beam, scanning and transmission electron microscopy are summarized. Two major trends are identified: First, the use of multi-modal microscopy in a correlative fashion, providing contrast modes spanning length- and time-scales, and second, the application of machine learning to guide data collection and analysis, recognizing the role of these tools in evaluating large data streams from increasingly sophisticated imaging experiments

    The College News, 1918-05-23, Vol. 04, No. 27

    Get PDF
    Bryn Mawr College student newspaper. Merged with The Haverford News in 1968 to form the Bi-college News (with various titles from 1968 on). Published weekly (except holidays) during the academic year
    corecore