1,558 research outputs found

    Autonomous power expert system

    Get PDF
    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning

    Analysis of real-world passwords for social media sites

    Get PDF
    Textual passwords have dominated all other entity authentication mechanisms since they were introduced in the early 1960’s. Despite an inherent weakness against social engineering, keylogging, shoulder surfing, dictionary, and brute-force attacks, password authentication continues to grow as the Internet expands. Existing research on password authentication proves that dictionary attacks are successful because users make poor choices when creating passwords. To make passwords easier to remember, users select character strings that are shorter in length and contain memorable content, like personal identity information, common words found in a dictionary, backward spellings of common words, recognizable sequences, and easily guessed mnemonic phrases. A number of these studies identify weaknesses found in passwords on social media sites [1] [2] [3] [4] [5]. However, this body of work fails to explore whether users choose more secure passwords on accounts that protect their professional online identity than they choose on accounts that are used for personal entertainment. In this study, we first cracked passwords from the over 6.4 million unsalted, SHA-1 hashed passwords stolen from the professional, social media site, LinkedIn. Next, we analyzed the length, character set composition, and entropy score of the passwords recovered. Then, we compared our results to the analysis of passwords performed by Weir, et al. on the RockYou! dataset to determine whether professionals protecting their online presence chose wiser passwords than social media site users who play online games. In our analysis we found that the users of the professional, social media site, LinkedIn, chose more secure passwords than the users of the social media gaming site, RockYou!. LinkedIn passwords contained a greater percentage of numbers, special characters, and uppercase letters than RockYou!. We also found that the LinkedIn passwords utilized special characters more frequently, but RockYou! passwords applied special character less predictably

    Autonomous power system intelligent diagnosis and control

    Get PDF
    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System

    Impact of self-attraction and loading on Earth rotation

    Get PDF
    The impact of self-attraction and loading (SAL) on Earth rotation has not been previously considered except at annual timescales. We estimate Earth rotation excitations using models of atmospheric, oceanic, and land hydrology surface mass variations and investigate the importance of including SAL over monthly to interannual timescales. We assess SAL effects in comparison with simple mass balance effects where net mass exchanged with the atmosphere and land is distributed uniformly over the global ocean. For oceanic polar motion excitations, SAL impacts are important even though mass balance impact is minor except at the annual period. This is true of global (atmosphere + land + ocean) polar motion excitations as well, although the SAL impacts are smaller. When estimating length-of-day excitations, mass balance effects have a dominant impact, particularly for oceanic excitation. Although SAL can have a significant impact on estimated Earth rotation excitations, its consideration generally did not improve comparisons with geodetic observations. This result may change in the future as surface mass models and Earth rotation observations improve

    A Generalized Polynomial Identity Arising from Quantum Mechanics

    Get PDF
    We establish a general identity that expresses a Pfaffian of a certain matrix as a quotient of homogeneous polynomials. This identity arises in the study of weakly interacting many-body systems and its proof provides another way of realizing the equivalence of two proposed types of trial wave functions used to describe such systems. In the proof of our identity, we make use of only elementary linear algebra and combinatorics and thereby avoid use of more advanced conformal field theory in establishing the aforementioned equivalence

    Neckties and Cerebrovascular Reactivity in Young Healthy Males: A Pilot Randomised Crossover Trial

    Get PDF
    Background. A necktie may elevate intracranial pressure through compression of venous return. We hypothesised that a tight necktie would deleteriously alter cerebrovascular reactivity. Materials and Methods. A necktie was simulated using bespoke apparatus comprising pneumatic inner-tube with aneroid pressure-gauge. Using a randomised crossover design, cerebrovascular reactivity was measured with the “pseudo-tie” worn inflated or deflated for 5 minutes (simulating tight/loose necktie resp.). Reactivity was calculated using breath hold index (BHI) and paired “t” testing used for comparative analysis. Results. We enrolled 40 healthy male volunteers. There was a reduction in cerebrovascular reactivity of 0.23 units with “tight” pseudotie (BHI loose 1.44 (SD 0.48); BHI tight 1.21 (SD 0.38) P < .001). Conclusion. Impairment in cerebrovascular reactivity was found with inflated pseudo-tie. However, mean BHI is still within a range of considered normal. The situation may differ in patients with vascular risk factors, and confirmatory work is recommended

    The Metagalactic Ionizing Radiation Field at Low Redshift

    Get PDF
    We compute the ionizing radiation field at low redshift, arising from Seyferts, QSOs, and starburst galaxies. This calculation combines recent Seyfert luminosity functions, extrapolated ultraviolet fluxes from our IUE-AGN database, and a new intergalactic opacity model based on Hubble Space Telescope and Keck Ly-alpha absorber surveys. At z = 0 for AGN only, our best estimate for the specific intensity at 1 Ryd is I_0 = 1.3 (+0.8/-0.5) x 10^-23 ergs/cm^2/s/Hz/sr, independent of H_0, Omega_0, and Lambda. The one-sided ionizing photon flux is Phi_ion = 3400 (+2100/-1300) photons/cm^2/s, and the H I photoionization rate is Gamma_HI = 3.2 (+2.0/-1.2) x 10^-14 s^-1 for alpha_s = 1.8. We also derive Gamma_ HI for z = 0 - 4. These error ranges reflect uncertainties in the spectral indexes for the ionizing EUV (alpha_s = 1.8 +/- 0.3) and the optical/UV (alpha_UV = 0.86 +/- 0.05), the IGM opacity model, the range of Seyfert luminosities (0.001 - 100 L*) and the completeness of the luminosity functions. Our estimate is a factor of three lower than the most stringent upper limits on the ionizing background (Phi_ion < 10^4 photons/cm^2/s) obtained from H-alpha observations in external clouds, and it lies within the range implied by other indirect measures. Starburst galaxies with a sufficiently large Lyman continuum escape fraction, f_ esc > 0.05, may provide a comparable background to AGN, I_0 (z=0) = 1.1 (+1.5/-0.7) x 10^{-23). An additional component of the ionizing background of this magnitude would violate neither upper limits from H-alpha observations nor the acceptable range from other measurements.Comment: 30 pages, 9 figures, accepted for Astronomical J. (Oct. 1999

    Whole Genome Phylogenetic Tree Reconstruction Using Colored de Bruijn Graphs

    Full text link
    We present kleuren, a novel assembly-free method to reconstruct phylogenetic trees using the Colored de Bruijn Graph. kleuren works by constructing the Colored de Bruijn Graph and then traversing it, finding bubble structures in the graph that provide phylogenetic signal. The bubbles are then aligned and concatenated to form a supermatrix, from which a phylogenetic tree is inferred. We introduce the algorithms that kleuren uses to accomplish this task, and show its performance on reconstructing the phylogenetic tree of 12 Drosophila species. kleuren reconstructed the established phylogenetic tree accurately, and is a viable tool for phylogenetic tree reconstruction using whole genome sequences. Software package available at: https://github.com/Colelyman/kleurenComment: 6 pages, 3 figures, accepted at BIBE 2017. Minor modifications to the text due to reviewer feedback and fixed typo
    • …
    corecore