45 research outputs found

    Two-mode beat phase noise of actively modelocked lasers

    Get PDF
    An analytic expression for the phase noise spectrum is estimated when two arbitrary longitudinal modes are selected for beating from the output of an actively modelocked laser. A separate experiment confirmed the theory qualitatively. It was found that two- mode beating posseses more phase noise than the beating involving the entire mode spectrum, especially at low offset frequency, even though two mode beating noise is decoupled from the RF oscillator noise to the first order

    Microresonator frequency comb optical clock

    Get PDF
    Optical frequency combs serve as the clockwork of optical clocks, which are now the best time-keeping systems in existence. The use of precise optical time and frequency technology in various applications beyond the research lab remains a significant challenge, but one that integrated microresonator technology is poised to address. Here, we report a silicon-chip-based microresonator comb optical clock that converts an optical frequency reference to a microwave signal. A comb spectrum with a 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clock’s output is the electronically countable 33 GHz microcomb line spacing, which features stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks

    Dual-microcavity narrow-linewidth Brillouin laser

    Get PDF
    Ultralow-noise yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include lidar, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to 7.8×10^(−14)  1/√Hz at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our dual-microcavity laser by performing spectral linewidth measurements with hertz-level resolution

    Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider

    Full text link
    We present an optical frequency divider based on a 200 MHz repetition rate Er:fiber mode-locked laser that, when locked to a stable optical frequency reference, generates microwave signals with absolute phase noise that is equal to or better than cryogenic microwave oscillators. At 1 Hz offset from a 10 GHz carrier, the phase noise is below -100 dBc/Hz, limited by the optical reference. For offset frequencies > 10 kHz, the phase noise is shot noise limited at -145 dBc/Hz. An analysis of the contribution of the residual noise from the Er:fiber optical frequency divider is also presented.Comment: 4 pages, 3 figure

    Low-noise stimulated Brillouin lasing in a microrod resonator

    Get PDF
    We demonstrate a Brillouin microcavity laser based on a microrod resonator exhibiting a frequency noise of 140 HZ/√Hz at 10 Hz offset. The corresponding laser linewidth is measured to be below 400 Hz

    Chip-Based Laser with 1 Hertz Integrated Linewidth

    Full text link
    Lasers with hertz-level linewidths on timescales up to seconds are critical for precision metrology, timekeeping, and manipulation of quantum systems. Such frequency stability typically relies on bulk-optic lasers and reference cavities, where increased size is leveraged to improve noise performance, but with the trade-off of cost, hand assembly, and limited application environments. On the other hand, planar waveguide lasers and cavities exploit the benefits of CMOS scalability but are fundamentally limited from achieving hertz-level linewidths at longer times by stochastic noise and thermal sensitivity inherent to the waveguide medium. These physical limits have inhibited the development of compact laser systems with frequency noise required for portable optical clocks that have performance well beyond conventional microwave counterparts. In this work, we break this paradigm to demonstrate a compact, high-coherence laser system at 1548 nm with a 1 s integrated linewidth of 1.1 Hz and fractional frequency instability less than 10−14^{-14} from 1 ms to 1 s. The frequency noise at 1 Hz offset is suppressed by 11 orders of magnitude from that of the free-running diode laser down to the cavity thermal noise limit near 1 Hz2^2/Hz, decreasing to 10−3^{-3} Hz2^2/Hz at 4 kHz offset. This low noise performance leverages wafer-scale integrated lasers together with an 8 mL vacuum-gap cavity that employs micro-fabricated mirrors with sub-angstrom roughness to yield an optical QQ of 11.8 billion. Significantly, all the critical components are lithographically defined on planar substrates and hold the potential for parallel high-volume manufacturing. Consequently, this work provides an important advance towards compact lasers with hertz-level linewidths for applications such as portable optical clocks, low-noise RF photonic oscillators, and related communication and navigation systems

    Stellar Spectroscopy in the Near-infrared with a Laser Frequency Comb

    Full text link
    The discovery and characterization of exoplanets around nearby stars is driven by profound scientific questions about the uniqueness of Earth and our Solar System, and the conditions under which life could exist elsewhere in our Galaxy. Doppler spectroscopy, or the radial velocity (RV) technique, has been used extensively to identify hundreds of exoplanets, but with notable challenges in detecting terrestrial mass planets orbiting within habitable zones. We describe infrared RV spectroscopy at the 10 m Hobby-Eberly telescope that leverages a 30 GHz electro-optic laser frequency comb with nanophotonic supercontinuum to calibrate the Habitable Zone Planet Finder spectrograph. Demonstrated instrument precision <10 cm/s and stellar RVs approaching 1 m/s open the path to discovery and confirmation of habitable zone planets around M-dwarfs, the most ubiquitous type of stars in our Galaxy

    A Novel Tdm Method For Serrodyne Modulation With High Sideband Suppression For Arbitrary Waveform Generation

    No full text
    A novel TDM approach has been incorporated with serrodyning to shift the frequency of an arbitrary carrier up to ±1 MHz with highest sideband suppression ever reported. This technique also realizes endless phase modulation. © 2005 Optical Society of America

    Injection Locked Mode-Locked Laser With Long-Term Feedback Stabilization

    No full text
    A semiconductor based, CW injection stabilized, 2.46 GHz harmonically mode-locked laser using a feedback loop for long term stabilization is demonstrated. Optical supermode suppression of 36dB and significant timing and amplitude noise reduction are observed. © 2008 Optical Society of America
    corecore