557 research outputs found

    Ipopv2: Photoionization of Ni XIV -- a test case

    Full text link
    Several years ago, M. Asplund and coauthors (2004) proposed a revision of the Solar composition. The use of this new prescription for Solar abundances in standard stellar models generated a strong disagreement between the predictions and the observations of Solar observables. Many claimed that the Standard Solar Model (SSM) was faulty, and more specifically the opacities used in such models. As a result, activities around the stellar opacities were boosted. New experiments (J. Bailey at Sandia on Z-Pinch, The OPAC consortium at LULI200) to measure directly absorbtion coefficients have been realized or are underway. Several theoretical groups (CEA-OPAS, Los Alamos Nat. Lab., CEA-SCORCG, The Opacity Project - The Iron Project (IPOPv2)) have started new sets of calculations using different approaches and codes. While the new results seem to confirm the good quality of the opacities used in SSM, it remains important to improve and complement the data currently available. We present recent results in the case of the photoionization cross sections for Ni XIV (Ni13+ ) from IPOPv2 and possible implications on stellar modelling.Comment: 10 pages, 3 figures, Conf. on New Advances in Stellar Physics: From Microscopic to Macroscopic Processe

    C II abundances in early-type stars: solution to a notorious non-LTE problem

    Full text link
    We address a long-standing discrepancy between non-LTE analyses of the prominent C II 4267 and 6578/82 A multiplets in early-type stars. A comprehensive non-LTE model atom of C II is constructed based on critically selected atomic data. This model atom is used for an abundance study of six apparently slow-rotating main-sequence and giant early B-type stars. High-resolution and high-S/N spectra allow us to derive highly consistent abundances not only from the classical features but also from up to 18 further C II lines in the visual - including two so far unreported emission features equally well reproduced in non-LTE. These results require the stellar atmospheric parameters to be determined with care. A homogeneous (slightly) sub-solar present-day carbon abundance from young stars in the solar vicinity (in associations and in the field) of log C/H +12= 8.29+/-0.03 is indicated.Comment: 8 pages, 5 figure

    A Quantitative Comparison of Opacities Calculated Using the Distorted- Wave and R\boldsymbol{R}-Matrix Methods

    Get PDF
    The present debate on the reliability of astrophysical opacities has reached a new climax with the recent measurements of Fe opacities on the Z-machine at the Sandia National Laboratory \citep{Bailey2015}. To understand the differences between theoretical results, on the one hand, and experiments on the other, as well as the differences among the various theoretical results, detailed comparisons are needed. Many ingredients are involved in the calculation of opacities; deconstructing the whole process and comparing the differences at each step are necessary to quantify their importance and impact on the final results. We present here such a comparison using the two main approaches to calculate the required atomic data, the RR-Matrix and distorted-wave methods, as well as sets of configurations and coupling schemes to quantify the effects on the opacities for the Fe XVIIFe\ XVII and Ni XIVNi\ XIV ions.Comment: 10 pages, 2 figure

    Radiative and Auger decay data for modelling nickel K lines

    Full text link
    Radiative and Auger decay data have been calculated for modelling the K lines in ions of the nickel isonuclear sequence, from Ni+^+ up to Ni27+^{27+}. Level energies, transition wavelengths, radiative transition probabilities, and radiative and Auger widths have been determined using Cowan's Hartree--Fock with Relativistic corrections (HFR) method. Auger widths for the third-row ions (Ni+^+--Ni10+^{10+}) have been computed using single-configuration average (SCA) compact formulae. Results are compared with data sets computed with the AUTOSTRUCTURE and MCDF atomic structure codes and with available experimental and theoretical values, mainly in highly ionized ions and in the solid state.Comment: submitted to ApJS. 42 pages. 12 figure

    HD 65949: Rosetta Stone or Red Herring

    Get PDF
    HD 65949 is a late B star with exceptionally strong Hg II at 3984[A], but it is not a typical HgMn star. The Re II spectrum is of extraordinary strength. Abundances, or upper limits are derived here for 58 elements based on a model with Teff = 13100K, and log(g) = 4.0. Even-Z elements through nickel show minor deviations from solar abundances. Anomalies among the odd-Z elements through copper are mostly small. Beyond the iron peak, a huge scatter is found. The abundance pattern of the heaviest elements resembles the N=126 r-process peak of solar material, though not in detail. We find a significant correlation of the abundance excesses with second ionization potentials for elements with Z > 30. This indicates the relevance of photospheric or near-photospheric processes. We explore a model with mass accretion of exotic material followed by the more commonly accepted differentiation by diffusion. That model leads to a number of predictions which challenge future work. Likely primary and secondary masses are near 3.3 and 1.6 M(solar), with a separation of ca. 0.25 AU. New atomic structure calculations are presented in two appendices.Comment: Accepted by MNRAS: 16 pages, 5 figure

    K-shell photoionization of Nickel ions using R-matrix

    Get PDF
    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.Comment: 23 pages, 6 figures. Accepted in ApJS
    • …
    corecore