559 research outputs found
Ipopv2: Photoionization of Ni XIV -- a test case
Several years ago, M. Asplund and coauthors (2004) proposed a revision of the
Solar composition. The use of this new prescription for Solar abundances in
standard stellar models generated a strong disagreement between the predictions
and the observations of Solar observables. Many claimed that the Standard Solar
Model (SSM) was faulty, and more specifically the opacities used in such
models. As a result, activities around the stellar opacities were boosted. New
experiments (J. Bailey at Sandia on Z-Pinch, The OPAC consortium at LULI200) to
measure directly absorbtion coefficients have been realized or are underway.
Several theoretical groups (CEA-OPAS, Los Alamos Nat. Lab., CEA-SCORCG, The
Opacity Project - The Iron Project (IPOPv2)) have started new sets of
calculations using different approaches and codes. While the new results seem
to confirm the good quality of the opacities used in SSM, it remains important
to improve and complement the data currently available. We present recent
results in the case of the photoionization cross sections for Ni XIV (Ni13+ )
from IPOPv2 and possible implications on stellar modelling.Comment: 10 pages, 3 figures, Conf. on New Advances in Stellar Physics: From
Microscopic to Macroscopic Processe
C II abundances in early-type stars: solution to a notorious non-LTE problem
We address a long-standing discrepancy between non-LTE analyses of the
prominent C II 4267 and 6578/82 A multiplets in early-type stars. A
comprehensive non-LTE model atom of C II is constructed based on critically
selected atomic data. This model atom is used for an abundance study of six
apparently slow-rotating main-sequence and giant early B-type stars.
High-resolution and high-S/N spectra allow us to derive highly consistent
abundances not only from the classical features but also from up to 18 further
C II lines in the visual - including two so far unreported emission features
equally well reproduced in non-LTE. These results require the stellar
atmospheric parameters to be determined with care. A homogeneous (slightly)
sub-solar present-day carbon abundance from young stars in the solar vicinity
(in associations and in the field) of log C/H +12= 8.29+/-0.03 is indicated.Comment: 8 pages, 5 figure
Atomic data and spectral model for Fe III
peer reviewe
A Quantitative Comparison of Opacities Calculated Using the Distorted- Wave and -Matrix Methods
The present debate on the reliability of astrophysical opacities has reached
a new climax with the recent measurements of Fe opacities on the Z-machine at
the Sandia National Laboratory \citep{Bailey2015}. To understand the
differences between theoretical results, on the one hand, and experiments on
the other, as well as the differences among the various theoretical results,
detailed comparisons are needed. Many ingredients are involved in the
calculation of opacities; deconstructing the whole process and comparing the
differences at each step are necessary to quantify their importance and impact
on the final results. We present here such a comparison using the two main
approaches to calculate the required atomic data, the -Matrix and
distorted-wave methods, as well as sets of configurations and coupling schemes
to quantify the effects on the opacities for the and ions.Comment: 10 pages, 2 figure
Radiative and Auger decay data for modelling nickel K lines
Radiative and Auger decay data have been calculated for modelling the K lines
in ions of the nickel isonuclear sequence, from Ni up to Ni. Level
energies, transition wavelengths, radiative transition probabilities, and
radiative and Auger widths have been determined using Cowan's Hartree--Fock
with Relativistic corrections (HFR) method. Auger widths for the third-row ions
(Ni--Ni) have been computed using single-configuration average
(SCA) compact formulae. Results are compared with data sets computed with the
AUTOSTRUCTURE and MCDF atomic structure codes and with available experimental
and theoretical values, mainly in highly ionized ions and in the solid state.Comment: submitted to ApJS. 42 pages. 12 figure
HD 65949: Rosetta Stone or Red Herring
HD 65949 is a late B star with exceptionally strong Hg II at 3984[A], but it
is not a typical HgMn star. The Re II spectrum is of extraordinary strength.
Abundances, or upper limits are derived here for 58 elements based on a model
with Teff = 13100K, and log(g) = 4.0. Even-Z elements through nickel show minor
deviations from solar abundances. Anomalies among the odd-Z elements through
copper are mostly small. Beyond the iron peak, a huge scatter is found. The
abundance pattern of the heaviest elements resembles the N=126 r-process peak
of solar material, though not in detail. We find a significant correlation of
the abundance excesses with second ionization potentials for elements with Z >
30. This indicates the relevance of photospheric or near-photospheric
processes. We explore a model with mass accretion of exotic material followed
by the more commonly accepted differentiation by diffusion. That model leads to
a number of predictions which challenge future work.
Likely primary and secondary masses are near 3.3 and 1.6 M(solar), with a
separation of ca. 0.25 AU. New atomic structure calculations are presented in
two appendices.Comment: Accepted by MNRAS: 16 pages, 5 figure
K-shell photoionization of Nickel ions using R-matrix
We present R-matrix calculations of photoabsorption and photoionization cross
sections across the K edge of the Li-like to Ca-like ions stages of Ni.
Level-resolved, Breit-Pauli calculations were performed for the Li-like to
Na-like stages. Term-resolved calculations, which include the mass-velocity and
Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion
stages. This data set is extended up to Fe-like Ni using the distorted wave
approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations
include the effects of radiative and Auger dampings by means of an optical
potential. The damping processes affect the absorption resonances converging to
the K thresholds causing them to display symmetric profiles of constant width
that smear the otherwise sharp edge at the K-shell photoionization threshold.
These data are important for the modeling of features found in photoionized
plasmas.Comment: 23 pages, 6 figures. Accepted in ApJS
- …