174 research outputs found

    Solution-Based Structural Analysis of the Decaheme Cytochrome, MtrA, by Small-Angle X-ray Scattering and Analytical Ultracentrifugation

    Get PDF
    The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be better understood. MtrA is a periplasmic decaheme c-type cytochrome from Shewanella oneidensis involved in the reduction of extracellular iron oxides and therefore is a critical element in Shewanella ability to engage in extracellular charge transfer. As a relatively small 333-residue protein, the heme content is surprisingly high. MtrA is believed to obtain electrons from the inner membrane-bound quinol oxidoreductase, CymA, and shuttle them across the outer membrane to MtrC, another decaheme cytochrome that directly interacts with insoluble metal oxides. How MtrA is able to perform this task is a question of interest. Here through the use of two solution-based techniques, small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC), we present the first structural analysis of MtrA. Our results establish that between 0.5 and 4 mg/mL, MtrA exists as a monomeric protein that is shaped like an extended molecular “wire” with a maximum protein dimension (D[subscript max]) of 104 Å and a rod-like aspect ratio of 2.2 to 2.5. This study contributes to a greater understanding of how MtrA fulfills its role in the redox processes that must occur before electrons reach the outside of the cell.National Science Foundation (U.S.). (0546323)National Institutes of Health (U.S.) (Grant Number F32GM904862)Howard Hughes Medical Institute. InvestigatorNational Science Foundation (U.S.) (Award DMR- 0936384

    Evidence for the adaptation of protein pH-dependence to subcellular pH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of genome sequences, and inferred protein coding genes, has led to several proteome-wide studies of isoelectric points. Generally, isoelectric points are distributed following variations on a biomodal theme that originates from the predominant acid and base amino acid sidechain pKas. The relative populations of the peaks in such distributions may correlate with environment, either for a whole organism or for subcellular compartments. There is also a tendency for isoelectric points averaged over a subcellular location to not coincide with the local pH, which could be related to solubility. We now calculate the correlation of other pH-dependent properties, calculated from 3D structure, with subcellular pH.</p> <p>Results</p> <p>For proteins with known structure and subcellular annotation, the predicted pH at which a protein is most stable, averaged over a location, gives a significantly better correlation with subcellular pH than does isoelectric point. This observation relates to the cumulative properties of proteins, since maximal stability for individual proteins follows the bimodal isoelectric point distribution. Histidine residue location underlies the correlation, a conclusion that is tested against a background of proteins randomised with respect to this feature, and for which the observed correlation drops substantially.</p> <p>Conclusion</p> <p>There exists a constraint on protein pH-dependence, in relation to the local pH, that is manifested in the pKa distribution of histidine sub-proteomes. This is discussed in terms of protein stability, pH homeostasis, and fluctuations in proton concentration.</p

    Single-molecule spectroscopy of fluorescent proteins

    Full text link

    Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT.

    No full text
    Many pathogens regulate or modify their immune-stimulating ligands to avoid detection by their infected hosts. Listeria monocytogenes, a facultative intracellular bacterial pathogen, interacts with multiple components of mammalian innate immunity during its infection cycle. During replication within the cytosol of infected cells, L. monocytogenes utilizes two multidrug efflux pumps, MdrM and MdrT, to secrete the small nucleic acid second messenger cyclic-di-AMP (c-di-AMP). Host recognition of c-di-AMP triggers the production of type I interferons, including beta interferon (IFN-β), which, surprisingly, promote L. monocytogenes virulence. In this study, we have examined the capacity of multiple laboratory and clinical isolates of L. monocytogenes to stimulate host production of IFN-β. We have identified the L. monocytogenes strain LO28 as able to hyperinduce IFN-β production in infected cells ∼30-fold more than the common laboratory clone L. monocytogenes strain 10403S. Genomic analyses determined that LO28 contains a naturally occurring loss-of-function allele of the transcriptional regulator BrtA and correspondingly derepresses expression of MdrT. Surprisingly, while derepression of MdrT resulted in hyperstimulation of IFN-β, it results in significant attenuation in multiple mouse models of infection. While type I interferons may promote L. monocytogenes virulence, this study demonstrates that unregulated expression of the c-di-AMP-secreting efflux pump MdrT significantly restricts virulence in vivo by an unknown mechanism

    Hyperinduction of Host Beta Interferon by a Listeria monocytogenes Strain Naturally Overexpressing the Multidrug Efflux Pump MdrT

    No full text
    Many pathogens regulate or modify their immune-stimulating ligands to avoid detection by their infected hosts. Listeria monocytogenes, a facultative intracellular bacterial pathogen, interacts with multiple components of mammalian innate immunity during its infection cycle. During replication within the cytosol of infected cells, L. monocytogenes utilizes two multidrug efflux pumps, MdrM and MdrT, to secrete the small nucleic acid second messenger cyclic-di-AMP (c-di-AMP). Host recognition of c-di-AMP triggers the production of type I interferons, including beta interferon (IFN-β), which, surprisingly, promote L. monocytogenes virulence. In this study, we have examined the capacity of multiple laboratory and clinical isolates of L. monocytogenes to stimulate host production of IFN-β. We have identified the L. monocytogenes strain LO28 as able to hyperinduce IFN-β production in infected cells ∼30-fold more than the common laboratory clone L. monocytogenes strain 10403S. Genomic analyses determined that LO28 contains a naturally occurring loss-of-function allele of the transcriptional regulator BrtA and correspondingly derepresses expression of MdrT. Surprisingly, while derepression of MdrT resulted in hyperstimulation of IFN-β, it results in significant attenuation in multiple mouse models of infection. While type I interferons may promote L. monocytogenes virulence, this study demonstrates that unregulated expression of the c-di-AMP-secreting efflux pump MdrT significantly restricts virulence in vivo by an unknown mechanism
    corecore