3 research outputs found

    Activation of Toll-Like Receptors Differentially Modulates Inflammation in the Human Reproductive Tract: Preliminary Findings

    No full text
    International audienceThe female reproductive tract (FRT) is the main site of entry of sexually transmitted infections (STIs). Toll-like receptors (TLRs) that recognize pathogenic motifs are widely expressed in the FRT. TLR stimulation induces immune activation and local production of inflammatory mediators. In the FRT, this response should also be compatible with reproductive functions and symbiosis with host microbiota. With a view to develop efficient mucosal vaccines to prevent STI acquisition, the role of TLR ligands in the FRT needs to be explored. We have therefore investigated the cytokine profiles of the different compartments of the FRT (vagina, endocervix, ectocervix, and uterus) before and after stimulation of mononuclear cells from human tissue specimens. The comparison with PBMCs allowed us to highlight the FRT specificities. We first characterized the main immune cell populations in each compartment and observed that their distribution was different through the compartments. The CD45+ cells represented a maximum of 11% in the FRT in contrast to 96% in PBMCs. We identified two main populations among the CD45+ cells in the four compartments of the FRT: CD3+ T cells (CD4+ and CD8+) and CD14+ APCs. B cell populations (CD19+) were much less frequent than T cells in all the FRT regions and were equally distributed. NK CD56+ cells were detected in all compartments and were more abundant in the uterus. Stimulation of the mononuclear cells was then performed with TLR agonists: R848 for TLR7/8, Poly I:C for TLR3, LPS for TLR4 and ODN CpG for TLR9. Cytokine levels in unstimulated cultures of cells isolated from all FRT compartments were higher than in cultures of unstimulated PBMCs. In contrast, after stimulation with TLR agonists, cytokine responses induced by TLR agonists were moderate in the FRT and significantly lower than in PBMCs. These responses were varied with different TLR ligands and FRT compartments. The cytokine profile induced by TLR activation in the FRT supports the role of these tissues in genital anti-microbial immunity and in the control of inflammation while allowing maintenance of its reproductive function

    Distinct characteristics of endometrial and decidual macrophages and regulation of their permissivity to HIV-1 infection by SAMHD1.

    No full text
    International audienceIn order to develop strategies to prevent HIV-1 (human immunodeficiency virus type 1) transmission, it is crucial to better characterize HIV-1 target cells in the female reproductive tract (FRT) mucosae and to identify effective innate responses. Control of HIV-1 infection in the decidua (the uterine mucosa during pregnancy) can serve as a model to study natural mucosal protection. Macrophages are the main HIV-1 target cells in the decidua. Here we report that in vitro, macrophages and T cells are the main HIV-1 targets in the endometrium in nonpregnant women. As reported for decidual macrophages (dM), endometrial macrophages (eM) were found to have an M2-like phenotype (CD68+ CD163+ CD206+ IL-10high). However, eM and dM may belong to different subpopulations, as they differently express certain markers and secrete different amounts of proinflammatory and anti-inflammatory cytokines. We observed strong expression of the SAMHD1 restriction factor and weak expression of its inactive form (pSAMHD1, phosphorylated at residue Thr592) in both eM and dM. Infection of macrophages from both tissues was enhanced in the presence of the viral protein Vpx, suggesting a role for SAMHD1 in the restriction of HIV-1 infection. This study and further comparisons of the decidua with FRT mucosae in nonpregnant women should help to identify mechanisms of mucosal protection against HIV-1 infection. The female reproductive tract mucosae are major portals of HIV-1 entry into the body. The decidua (uterine mucosa during pregnancy) can serve as a model for studying natural mucosal protection against HIV-1 transmission. A comparison of target cells and innate responses in the decidua versus the endometrium in nonpregnant women could help to identify protective mechanisms. Here, we report for the first time that macrophages are one of the main HIV-1 target cells in the endometrium and that infection of macrophages from both the endometrium and the decidua is restricted by SAMHD1. These findings might have implications for the development of vaccines to prevent HIV-1 mucosal transmission

    Dynamic Shift from CD85j/ILT-2 to NKG2D NK Receptor Expression Pattern on Human Decidual NK during the First Trimester of Pregnancy

    Get PDF
    International audienceDuring the first trimester of human pregnancy, Natural Killer (NK) cells of the maternal uterine mucosa (e.g. decidua) have a unique phenotype and are involved in crucial physiological processes during pregnancy. We investigated whether modifications of the NK receptor repertoire occur during the first trimester of pregnancy. We found significantly decreased expression of KIR2DL1/S1 and KIR2DL2/L3/S2 receptors, NKp30 and NKp44 activatory receptors, and the CD85j (ILT-2) inhibitory receptor. We also observed significantly increased expression of the NKG2D activatory receptor at the decidual NK cell surface. By flow cytometry, we further highlighted an evolution of NK subsets between 8 and 12 weeks of gestation, with a shift from the KIR2DL1/S1 + /KIR2DL2/L3/S2 + subset towards the double negative subset, coupled with a decrease of the CD85j + /NKG2D 2 subset in favour of the CD85j 2 /NKG2D + subset. Furthermore, cell surface expression of NK receptor ligands, including CD85j and NKG2D ligands, has been characterized by flow cytometry on decidual immune CD14 + and CD3 + cells. HLA-G, the high affinity ligand of CD85j, was detected on both cell types. In contrast, NKG2D ligands ULBP-2 ULBP-3 and MICA/B were not expressed on CD14 + and CD3 + cells, however a variable expression of ULBP-1 was observed. The ligand expression of KIR2DL1/S1 and KIR2DL2/L3/S2 was also analyzed: the HLA-C molecule was expressed at a low level on some CD14 + cells whereas it was not detected on CD3 + cell surface. NK receptor ligands are known to be also expressed on the invading placental trophoblast cells. Thus, the phenotypic evolutions of decidual NK cells described in this present study may preserve their activation/inhibition balance during the first trimester of pregnancy
    corecore