818 research outputs found

    Recent Developments: Dockworker\u27s Remedy

    Get PDF

    The coupling constants for an electroweak model with a SU(4)PSSU(4)EWSU(4)_{PS} \otimes SU(4)_{EW} unification symmetry

    Full text link
    We introduce the sequence of spontaneous symmetry breaking of a coupling between Pati-Salam and electroweak symmetries SU(4)PSSU(4)EWSU(4)_{PS} \otimes SU(4)_{EW} in order to establish a mathematically consistent relation among the coupling constants at grand unification energy scale. With the values of baryon minus lepton quantum numbers of known quarks and leptons, by including right-handed neutrinos, we can find the mixing angle relations at different energy levels up to the electromagnetic U(1)EMU(1)_{EM} scale.Comment: 8 page

    Quarkonium Wave Functions at the Origin

    Get PDF
    We tabulate values of the radial Schr\"{o}dinger wave function or its first nonvanishing derivative at zero quark-antiquark separation, for ccˉc\bar{c}, cbˉc\bar{b}, and bbˉb\bar{b} levels that lie below, or just above, flavor threshold. These quantities are essential inputs for evaluating production cross sections for quarkonium states.Comment: 9 pages, RevTeX, no figure

    Spacings of Quarkonium Levels with the Same Principal Quantum Number

    Get PDF
    The spacings between bound-state levels of the Schr\"odinger equation with the same principal quantum number NN but orbital angular momenta \ell differing by unity are found to be nearly equal for a wide range of power potentials V=λrνV = \lambda r^\nu, with ENF(ν,N)G(ν,N)E_{N \ell} \approx F(\nu, N) - G(\nu,N) \ell. Semiclassical approximations are in accord with this behavior. The result is applied to estimates of masses for quarkonium levels which have not yet been observed, including the 2P ccˉc \bar c states and the 1D bbˉb \bar b states.Comment: 20 pages, latex, 3 uuencoded figures submitted separately (process using psfig.sty

    Prospects for the Bc Studies at LHCb

    Get PDF
    We discuss the motivations and perspectives for the studies of the mesons of the (bc) family at LHCb. The description of production and decays at LHC energies is given in details. The event yields, detection efficiencies, and background conditions for several Bc decay modes at LHCb are estimated.Comment: 20 pages, 5 eps-figure

    Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    Full text link
    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right--symmetric SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L} gauge group. In a fourth class of models, built on SU(4)_{PS} x SU(2)_L x SU(2)_R gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.Comment: 20 pages, no figures, uses RevTeX; typos correcte

    Eutrophication-induced phosphorus limitation in the Mississippi River plume: Evidence from fast repetition rate fluorometry

    Get PDF
    We assessed nutrient limitation in the Mississippi River plurne and Louisiana continental shelf during the summer of 2002 (04-08 July). We measured nutrient concentrations, alkaline phosphatase (AP) activities, chlorophyll a (Chl a) concentrations, and four fast repetition rate fluorescence (FRRF) parameters: the maximum quantum yield of photochemistry in photosystem II (PSII), F-v:F-m; the functional absorption cross section for PSII, sigma(psII); the time for photosynthetic electron transport on the acceptor side of PSII, tau(Qa); and the connectivity factor, p, in 24-h-long nutrient addition bioassays near the Mississippi River delta. Low phosphorus (P) concentrations, elevated inorganic nitrogen-to-phosphorus ratios, high AP activities, and Chl a increases in response to P additions in the bioassays all indicated phosphorus limitation that was confirmed by the response of FRRF parameters. This is the first study to use FRRF to confirm results from basic oceanographic methods to demonstrate phosphorus limitation in a marine setting. F-v:F-m and p responded positively to phosphorus addition, while sigma(psII) and tau(Qa) decreased in the same treatments. When nitrate alone was added, none of the measured parameters differed significantly from the control. We therefore suggest that FRRF can be used to rapidly detect phosphorus limitation in marine ecosystems

    Scalar radius of the pion in the Kroll-Lee-Zumino renormalizable theory

    Full text link
    The Kroll-Lee-Zumino renormalizable Abelian quantum field theory of pions and a massive rho-meson is used to calculate the scalar radius of the pion at next to leading (one loop) order in perturbation theory. Due to renormalizability, this determination involves no free parameters. The result is s=0.40fm2_s = 0.40 {fm}^2. This value gives for ˉ4\bar{\ell}_4, the low energy constant of chiral perturbation theory, ˉ4=3.4\bar{\ell}_4 = 3.4, and Fπ/F=1.05F_\pi/F = 1.05, where F is the pion decay constant in the chiral limit. Given the level of accuracy in the masses and the ρππ\rho\pi\pi coupling, the only sizable uncertainty in this result is due to the (uncalculated) NNLO contribution

    Pion form factor in the Kroll-Lee-Zumino model

    Full text link
    The renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino is used to compute the one-loop vertex corrections to the tree-level, Vector Meson Dominance (VMD) pion form factor. These corrections, together with the known one-loop vacuum polarization contribution, lead to a substantial improvement over VMD. The resulting pion form factor in the space-like region is in excellent agreement with data in the whole range of accessible momentum transfers. The time-like form factor, known to reproduce the Gounaris-Sakurai formula at and near the rho-meson peak, is unaffected by the vertex correction at order O\cal{O}(g_\rpp^2).Comment: Revised version corrects a misprint in Eq.(1

    Undetected Blooms in Prince William Sound: Using Multiple Techniques to Elucidate the Base of the Summer Food Web

    Full text link
    © 2015, Coastal and Estuarine Research Federation. Prince William Sound supports many commercially and culturally important species. The phytoplankton community dynamics which support and sustain the high biomass and diversity of this ecosystem are largely unknown. The aim of this study was to describe the phytoplankton community composition during the summer, the time at which this system supports many additional migrants and commercially important fisheries. Phytoplankton community composition (pigments), dissolved nutrients, Secchi depth, total and particulate organic carbon and nitrogen, and export to deep water were measured during the summers of 2008–2010. In addition, natural abundance stable isotopes (δ13C and δ15N) of particulate organic matter (POM) and faunal samples were measured in 2010. The analysis of the phytoplankton community composition using multivariate statistics showed that changes over the summer were driven by changes in the proportion of the dominant groups: diatoms, dinoflagellates, cyanobacteria, cryptophytes, chlorophytes, and prasinophytes. These changes were driven by changes in nutrients including an organic nitrogen source, phosphate, and silica and correspond to shifts in particulate concentrations. A consistent pattern was observed each year: a large Noctiluca sp. bloom in June concurrent with low nutrients, low diversity, and high particulate organic carbon (POC) concentrations was followed by a shift in the phytoplankton community to a more diverse smaller size class community in July and equilibrating in August. This annual summer bloom could be an important contributor to the energy and nutrient inputs at the base of the regional marine food web
    corecore