13 research outputs found

    Granulomatous inflammation in tuberculosis and sarcoidosis: does the lymphatic system contribute to disease?

    Get PDF
    A striking and unexplained feature of granulomatous inflammation is its anatomical association with the lymphatic system. Accumulating evidence suggests that lymphatic tracks and granulomas may alter the function of each other. The formation of new lymphatics, or lymphangiogenesis, is an adaptive response to tumor formation, infection, and wound healing. Granulomas also may induce lymphangiogenesis which, through a variety of mechanisms, could contribute to disease outcomes in tuberculosis and sarcoidosis. On the other hand, alterations in lymph node function and lymphatic draining may be primary events which attenuate the risk and severity of granulomatous inflammation. This review begins with an introduction of granulomatous inflammation and the lymphatic system. A role of the lymphatic system in tuberculosis and sarcoidosis is then hypothesized. With a focus on lymphangiogenesis in these diseases, and on the potential for this process to promote dissemination, parallels are established with the well‐established role of lymphangiogenesis in tumor biology

    Macrophage-specific responses to human -and animal- adapted tubercle bacilli reveal pathogen and host factors driving multinucleated cell formation

    Get PDF
    The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process

    Functional immune responses against SARS-CoV-2 variants of concern after fourth COVID-19 vaccine dose or infection in patients with blood cancer

    Get PDF
    Summary Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886) we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralising antibody titres (NAbT) using a live virus microneutralization assay against wild-type (WT), Delta, Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titres and T cell responses after the fourth vaccine dose increases compared to those after the third vaccine dose. Patients who received B cell-depleting therapies within 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination

    Strong peak immunogenicity but rapid antibody waning following third vaccine dose in older residents of care homes

    Get PDF
    Third-dose coronavirus disease 2019 vaccines are being deployed widely but their efficacy has not been assessed adequately in vulnerable older people who exhibit suboptimal responses after primary vaccination series. This observational study, which was carried out by the VIVALDI study based in England, looked at spike-specific immune responses in 341 staff and residents in long-term care facilities who received an mRNA vaccine following dual primary series vaccination with BNT162b2 or ChAdOx1. Third-dose vaccination strongly increased antibody responses with preferential relative enhancement in older people and was required to elicit neutralization of Omicron. Cellular immune responses were also enhanced with strong cross-reactive recognition of Omicron. However, antibody titers fell 21–78% within 100 d after vaccine and 27% of participants developed a breakthrough Omicron infection. These findings reveal strong immunogenicity of a third vaccine in one of the most vulnerable population groups and endorse an approach for widespread delivery across this population. Ongoing assessment will be required to determine the stability of immune protection

    Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells

    No full text
    Background: Phthiocerol dimycocerosates (PDIM), glycolipids found on the outer surface of virulent members of the Mycobacterium tuberculosis (Mtb) complex, are a major contributing factor to the pathogenesis of Mtb. Myelocytic cells, such as macrophages and dendritic cells, are the primary hosts for Mtb after infection and previous studies have shown multiple roles for PDIM in supporting Mtb in these cells. However, Mtb can infect other cell types. We previously showed that Mtb efficiently replicates in human lymphatic endothelial cells (hLECs) and that the hLEC cytosol acts as a reservoir for Mtb in humans. Here, we examined the role of PDIM in Mtb translocation to the cytosol in hLECs. Results: Analysis of a Mtb mutant unable to produce PDIM showed less co-localisation of bacteria with the membrane damage marker Galectin-8 (Gal8), indicating that PDIM strongly contribute to phagosomal membrane damage. Lack of this Mtb lipid also leads to a reduction in the proportion of Mtb co-localising with markers of macroautophagic removal of intracellular bacteria (xenophagy) such as ubiquitin, p62 and NDP52. hLEC imaging with transmission electron microscopy shows that Mtb mutants lacking PDIM are much less frequently localised in the cytosol, leading to a lower intracellular burden. Conclusions: PDIM is needed for the disruption of the phagosome membrane in hLEC, helping Mtb avoid the hydrolytic phagolysosomal milieu. It facilitates the translocation of Mtb into the cytosol, and the decreased intracellular burden of Mtb lacking PDIM indicates that the cytosol is the preferred replicative niche for Mtb in these cells. We hypothesise that pharmacological targeting of PDIM synthesis in Mtb would reduce the formation of a lymphatic reservoir of Mtb in humans

    Tirap controls Mycobacterium tuberculosis phagosomal acidification.

    No full text
    Progression of tuberculosis is tightly linked to a disordered immune balance, resulting in inability of the host to restrict intracellular bacterial replication and its subsequent dissemination. The immune response is mainly characterized by an orchestrated recruitment of inflammatory cells secreting cytokines. This response results from the activation of innate immunity receptors that trigger downstream intracellular signaling pathways involving adaptor proteins such as the TIR-containing adaptor protein (Tirap). In humans, resistance to tuberculosis is associated with a loss-of-function in Tirap. Here, we explore how genetic deficiency in Tirap impacts resistance to Mycobacterium tuberculosis (Mtb) infection in a mouse model and ex vivo. Interestingly, compared to wild type littermates, Tirap heterozygous mice were more resistant to Mtb infection. Upon investigation at the cellular level, we observed that mycobacteria were not able to replicate in Tirap-deficient macrophages compared to wild type counterparts. We next showed that Mtb infection induced Tirap expression which prevented phagosomal acidification and rupture. We further demonstrate that the Tirap-mediated anti-tuberculosis effect occurs through a Cish-dependent signaling pathway. Our findings provide new molecular evidence about how Mtb manipulates innate immune signaling to enable intracellular replication and survival of the pathogen, thus paving the way for host-directed approaches to treat tuberculosis

    Synergic Effects Between N‑Heterocyclic Carbene and Chelating Benzylidene–Ether Ligands Toward the Initiation Step of Hoveyda–Grubbs Type Ru Complexes

    No full text
    Synergic effects between ancillary N-heterocyclic carbenes [(1,3-bis­(2,4,6-trimethylphenyl)-1,3-imidazoline-2-ylidene or 1,3-bis­(2,6-di<i>iso</i>propylphenyl)-1,3-imidazoline-2-ylidene] and chelating benzylidene–ether ligands were investigated by studying initiation rates and kinetic profiles of Hoveyda–Grubbs (HG) type Ru complexes. A newly designed Ru-benzylidene-oxazinone precatalyst <b>4</b> was compared with Grela and Blechert complexes bearing modified <i>iso</i>propyloxy chelating leaving groups and with the standard HG complex to understand how the ancillary and the leaving ligands interact and influence the catalytic activity
    corecore