24 research outputs found

    Biotechnologie des archées

    No full text
    En ligne sur Archimer : http://archimer.ifremer.fr/doc/00004/11488/8078.pdfLa majorité des enzymes utilisées dans l'industrie provient des bactéries et des levures. Mais les conditions extrêmes dans lesquelles se développent de nombreuses espèces d'archées font que leurs constituants cellulaires possèdent des propriétés et une stabilité propices à leur utilisation en biotechnologie

    Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys

    Get PDF
    The prokaryotic diversity of culturable thermophilic communities of deep-sea hydrothermal chimneys was analysed using a continuous enrichment culture performed in a gas-lift bioreactor, and compared to classical batch enrichment cultures in vials. Cultures were conducted at 60°C and pH6.5 using a complex medium containing carbohydrates, peptides and sulphur, and inoculated with a sample of a hydrothermal black chimney collected at the Rainbow field, Mid-Atlantic Ridge, at 2,275m depth. To assess the relevance of both culture methods, bacterial and archaeal diversity was studied using cloning and sequencing, DGGE, and whole-cell hybridisation of 16S rRNA genes. Sequences of heterotrophic microorganisms belonging to the genera Marinitoga, Thermosipho, Caminicella (Bacteria) and Thermococcus (Archaea) were obtained from both batch and continuous enrichment cultures while sequences of the autotrophic bacterial genera Deferribacter and Thermodesulfatator were only detected in the continuous bioreactor culture. It is presumed that over time constant metabolite exchanges will have occurred in the continuous enrichment culture enabling the development of a more diverse prokaryotic community. In particular, CO2 and H2 produced by the heterotrophic population would support the growth of autotrophic populations. Therefore, continuous enrichment culture is a useful technique to grow over time environmentally representative microbial communities and obtain insights into prokaryotic species interactions that play a crucial role in deep hydrothermal environment

    Binding to PCNA in Euryarchaeal DNA Replication requires two PIP motifs for DNA polymerase D and one PIP motif for DNA polymerase B

    No full text
    En libre-accès sur Archimer : http://archimer.ifremer.fr/doc/2009/publication-7317.pdfInternational audienceReplicative DNA polymerases possess a canonical C-terminal proliferating cell nuclear antigen (PCNA)-binding motif termed the PCNA-interacting protein (PIP) box. We investigated the role of the PIP box on the functional interactions of the two DNA polymerases, PabPol B (family B) and PabPol D (family D), from the hyperthermophilic euryarchaeon Pyrococcus abyssi, with its cognate PCNA. The PIP box was essential for interactions of PabPol B with PCNA, as shown by surface plasmon resonance and primer extension studies. In contrast, binding of PabPol D to PCNA was affected only partially by removing the PIP motif. We identified a second palindromic PIP box motif at the N-terminus of the large subunit of PabPol D that was required for the interactions of PabPol D with PCNA. Thus, two PIP motifs were needed for PabPol D for binding to PabPCNA. Moreover, the C-terminus of PabPCNA was essential for stimulation of PabPol D activity but not for stimulation of PabPol B activity. Neither DNA polymerase interacted with the PabPCNA interdomain connecting loop. Our data suggest that distinct processes are involved in PabPol D and PabPol B binding to PCNA, raising the possibility that Archaea require two mechanisms for recruiting replicative DNA polymerases at the replication fork

    Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent

    No full text
    En libre-accès sur Archimer : http://archimer.ifremer.fr/doc/2009/publication-6977.pdfInternational audienceA hyperthermophilic, anaerobic, dissimilatory Fe(III)-reducing, facultatively chemolithoautotrophic archaeon (strain SBH6(T)) was isolated from a hydrothermal sample collected from the deepest of the known World Ocean hydrothermal fields, Ashadze field (1 degrees 58' 21'' N 4 degrees 51' 47'' W) on the Mid-Atlantic Ridge, at a depth of 4100 m. The strain was enriched using acetate as the electron donor and Fe(III) oxide as the electron acceptor. Cells of strain SBH6(T) were irregular cocci, 0.3-0.5 mum in diameter. The temperature range for growth was 50-85 degrees C, with an optimum at 81 degrees C. The pH range for growth was 5.0-7.5, with an optimum at pH 6.8. Growth of SBH6(T) was observed at NaCl concentrations ranging from 1 to 6 % (w/v) with an optimum at 2.5 % (w/v). The isolate utilized acetate, formate, pyruvate, fumarate, malate, propionate, butyrate, succinate, glycerol, stearate, palmitate, peptone and yeast extract as electron donors for Fe(III) reduction. It was also capable of growth with H(2) as the sole electron donor, CO(2) as a carbon source and Fe(III) as an electron acceptor without the need for organic substances. Fe(III) [in the form of poorly crystalline Fe(III) oxide or Fe(III) citrate] was the only electron acceptor that supported growth. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Geoglobus ahangari 234(T) (97.0 %). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Geoglobus acetivorans sp. nov. is proposed. The type strain is SBH6(T) (=DSM 21716(T) =VKM B-2522(T))

    Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent

    No full text
    This is an author manuscript that has been accepted for publication in International Journal of Systematic and Evolutionary Microbiology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in International Journal of Systematic and Evolutionary Microbiology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of 'Fair Use of Copyrighted Materials' (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://mic.sgmjournals.org, and is freely available without a subscription.International audienceA novel strictly anaerobic, thermophilic, sulfur-reducing bacterium, designated PH1209(T), was isolated from an East Pacific Rise hydrothermal vent (1 degrees N) sample and studied using a polyphasic taxonomic approach. Cells were Gram-negative, motile rods (approx. 1.60 x 0.40 microm) with a single polar flagellum. Strain PH1209(T) grew at temperatures between 33 and 65 degrees C (optimum 60 degrees C), from pH 5.0 to 8.0 (optimum 6.0-6.5), and between 2 and 4 % (w/v) NaCl (optimum 3 %). Cells grew chemolithoautotrophically with H(2) as an energy source, S(0) as an electron acceptor and CO(2) as a carbon source. Strain PH1209(T) was also able to use peptone and yeast extract as carbon sources. The G+C content of the genomic DNA was 35 mol%. Phylogenetic analyses based on 16S rRNA gene sequencing showed that strain PH1209(T) fell within the order Nautiliales, in the class Epsilonproteobacteria. Comparative 16S rRNA gene sequence analysis indicated that strain PH1209(T) belonged to the genus Nautilia and shared 97.2 and 98.7 % 16S rRNA gene sequence identity, respectively, with the type strains of Nautilia lithotrophica and Nautilia profundicola. It is proposed, from the polyphasic evidence, that the strain represents a novel species, Nautilia abyssi sp. nov.; the type strain is PH1209(T) (=DSM 21157(T)=JCM 15390(T))

    Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent

    No full text
    En libre-accès sur Archimer : http://archimer.ifremer.fr/doc/2009/publication-6598.pdfInternational audienceA thermophilic, anaerobic, chemolithoautotrophic bacterium (designated strain SL50(T)) was isolated from a hydrothermal sample collected at the Mid-Atlantic Ridge from the deepest of the known World ocean hydrothermal fields, Ashadze field (1 degrees 58' 21'' N 4 degrees 51' 47'' W) at a depth of 4100 m. Cells of strain SL50(T) were motile, straight to bent rods with one polar flagellum, 0.5-0.6 mum in width and 3.0-3.5 mum in length. The temperature range for growth was 25-75 degrees C, with an optimum at 60 degrees C. The pH range for growth was 5.0-7.5, with an optimum at pH 6.5. Growth of strain SL50(T) was observed at NaCl concentrations ranging from 1.0 to 6.0 % (w/v) with an optimum at 2.5 % (w/v). The generation time under optimal growth conditions for strain SL50(T) was 60 min. Strain SL50(T) used molecular hydrogen, acetate, lactate, succinate, pyruvate and complex proteinaceous compounds as electron donors, and Fe(III), Mn(IV), nitrate or elemental sulfur as electron acceptors. The G+C content of the DNA of strain SL50(T) was 28.7 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of strain SL50(T) was Deferribacter abyssi JR(T) (95.5 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Deferribacter autotrophicus sp. nov. is proposed. The type strain is SL50(T) (=DSM 21529(T)=VKPM B-10097(T)). Deferribacter autotrophicus sp. nov. is the first described deep-sea bacterium capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor and ferric iron as electron acceptor and CO(2) as the carbon source

    Extending the sub-sea-floor biosphere

    No full text
    En libre-accès sur Archimer : http://archimer.ifremer.fr/doc/2008/publication-4209.pdfInternational audienceSub-sea-floor sediments may contain two-thirds of Earth's total prokaryotic biomass. However, this has its basis in data extrapolation from ~500-meter to 4-kilometer depths, whereas the deepest documented prokaryotes are from only 842 meters. Here, we provide evidence for low concentrations of living prokaryotic cells in the deepest (1626 meters below the sea floor), oldest (111 million years old), and potentially hottest (~100 degrees C) marine sediments investigated. These Newfoundland margin sediments also have DNA sequences related to thermophilic and/or hyperthermophilic Archaea. These form two unique clusters within Pyrococcus and Thermococcus genera, suggesting unknown, uncultured groups are present in deep, hot, marine sediments (~54 degrees to 100 degrees C). Sequences of anaerobic methane-oxidizing Archaea were also present, suggesting a deep biosphere partly supported by methane. These findings demonstrate that the sub-sea-floor biosphere extends to at least 1600 meters below the sea floor and probably deeper, given an upper temperature limit for prokaryotic life of at least 113 degrees C and increasing thermogenic energy supply with depth

    Cultivating the uncultured: limits, advances and future challenges

    No full text
    The original publication is available at www.springerlink.comInternational audienceSince the invention of the Petri dish, there have been continuous efforts to improve efficiency in microbial cultivation. These efforts were devoted to the attainment for diverse growth conditions, simulation of in situ conditions and achievement of high-throughput rates. As a result, prokaryotes catalysing novel redox reactions as well as representatives of abundant, but not-yet cultured taxa, were isolated. Significant insights into microbial physiology have been made by studying the small number of prokaryotes already cultured. However, despite these numerous breakthroughs, microbial cultivation is still a low-throughput process. The main hindrance to cultivation is likely due to the prevailing lack of knowledge on targeted species. In this review, we focus on the limiting factors surrounding cultivation. We discuss several cultivation obstacles, including the loss of microbial cell-cell communication following species isolation. Future research directions, including the refinement of culture media, strategies based on cell-cell communication and high-throughput innovations, are reviewed. We further propose that a combination of these approaches is urgently required to promote cultivation of uncultured species, thereby dawning a new era in the field

    Marine Biotechnology

    No full text
    ISBN 978-90-481-8616-
    corecore