346 research outputs found

    Handling Overlapping Asymmetric Datasets -- A Twice Penalized P-Spline Approach

    Full text link
    Overlapping asymmetric datasets are common in data science and pose questions of how they can be incorporated together into a predictive analysis. In healthcare datasets there is often a small amount of information that is available for a larger number of patients such as an electronic health record, however a small number of patients may have had extensive further testing. Common solutions such as missing imputation can often be unwise if the smaller cohort is significantly different in scale to the larger sample, therefore the aim of this research is to develop a new method which can model the smaller cohort against a particular response, whilst considering the larger cohort also. Motivated by non-parametric models, and specifically flexible smoothing techniques via generalized additive models, we model a twice penalized P-Spline approximation method to firstly prevent over/under-fitting of the smaller cohort and secondly to consider the larger cohort. This second penalty is created through discrepancies in the marginal value of covariates that exist in both the smaller and larger cohorts. Through data simulations, parameter tunings and model adaptations to consider a continuous and binary response, we find our twice penalized approach offers an enhanced fit over a linear B-Spline and once penalized P-Spline approximation. Applying to a real-life dataset relating to a person's risk of developing Non-Alcoholic Steatohepatitis, we see an improved model fit performance of over 65%. Areas for future work within this space include adapting our method to not require dimensionality reduction and also consider parametric modelling methods. However, to our knowledge this is the first work to propose additional marginal penalties in a flexible regression of which we can report a vastly improved model fit that is able to consider asymmetric datasets, without the need for missing data imputation.Comment: 52 pages, 17 figures, 8 tables, 34 reference

    Handling Overlapping Asymmetric Data Sets—A Twice Penalized P-Spline Approach

    Get PDF
    Aims: Overlapping asymmetric data sets are where a large cohort of observations have a small amount of information recorded, and within this group there exists a smaller cohort which have extensive further information available. Missing imputation is unwise if cohort size differs substantially; therefore, we aim to develop a way of modelling the smaller cohort whilst considering the larger. Methods: Through considering traditionally once penalized P-Spline approximations, we create a second penalty term through observing discrepancies in the marginal value of covariates that exist in both cohorts. Our now twice penalized P-Spline is designed to firstly prevent over/under-fitting of the smaller cohort and secondly to consider the larger cohort. Results: Through a series of data simulations, penalty parameter tunings, and model adaptations, our twice penalized model offers up to a 58% and 46% improvement in model fit upon a continuous and binary response, respectively, against existing B-Spline and once penalized P-Spline methods. Applying our model to an individual’s risk of developing steatohepatitis, we report an over 65% improvement over existing methods. Conclusions: We propose a twice penalized P-Spline method which can vastly improve the model fit of overlapping asymmetric data sets upon a common predictive endpoint, without the need for missing data imputation

    Digital Intervention With Lifestyle Coach Support to Target Dietary and Physical Activity Behaviors of Adults With Nonalcoholic Fatty Liver Disease: Systematic Development Process of VITALISE Using Intervention Mapping

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is linked to excess calorie consumption, physical inactivity and being overweight. Patients with NAFLD can halt or decelerate progression, and potentially reverse their condition by changing their lifestyle behaviour. National and international guidelines recommend the use of lifestyle interventions, however there remains a discordance between published guidelines and clinical practice. This is primarily due to a lack of NAFLD-specific lifestyle interventions to support weight loss and improve liver function. Objective: To use Intervention Mapping to systematically develop a digital intervention to support patients with NAFLD to initiate and maintain changes to their dietary and physical activity behaviour to promote weight loss. Methods: Intervention Mapping consisted of 6 steps. A needs assessment with primary and secondary healthcare professionals and patients with NAFLD (step 1). Identification of the social cognitive determinants of change and behavioural outcomes of the intervention (step 2). Linking social cognitive determinants of behavioural outcomes with behaviour change techniques to effectively target dietary and physical activity behaviour (step 3). Step 4 involved the development of a prototype digital intervention that integrated the strategies from step 3, and the information content identified as important for improving knowledge and skills from steps 1 and 2. Step 5 involved development of an implementation plan with a digital provider of lifestyle behaviour change programmes to NHS patients using their delivery platform and lifestyle coaches. Finally, step 6 involved piloting the digital intervention with patients to obtain data on access, usability and content. Results: A digital intervention was developed consisting of eight modules, self-regulatory tools and provision of telephone support by trained lifestyle coaches to help facilitate behavioural intention, enactment and maintenance. A commercial provider of digital lifestyle behaviour change programmes enrolled 16 patients with NAFLD to the prototype intervention for 12 consecutive weeks. Eleven of the 16 participants successfully accessed the intervention and continued to engage with the content following initial log-in (on average four times over the piloting period). Most frequently accessed modules were “welcome to the programme”, “understanding NAFLD”, and “food and NAFLD”. Goal setting and self-monitoring tools were accessed on 22 occasions (four times per tool on average). Three out of eleven participants requested access to a lifestyle coach. Conclusions: Intervention Mapping provided a systematic methodological framework to guide a theory- and evidence-informed co-design intervention development process with patients and HCPs. The digital intervention with remote support by a lifestyle coach was acceptable to patients with NAFLD and feasible to deliver. Issues with initial access, optimisation of information content and promoting the value of remote lifestyle coach support require further development ahead of future research to establish intervention effectiveness

    A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH

    Get PDF
    BACKGROUND Management of nonalcoholic steatohepatitis (NASH) is an unmet clinical need. Lanifibranor is a pan-PPAR (peroxisome proliferator–activated receptor) agonist that modulates key metabolic, inflammatory, and fibrogenic pathways in the pathogenesis of NASH. METHODS In this phase 2b, double-blind, randomized, placebo-controlled trial, patients with noncirrhotic, highly active NASH were randomly assigned in a 1:1:1 ratio to receive 1200 mg or 800 mg of lanifibranor or placebo once daily for 24 weeks. The pri- mary end point was a decrease of at least 2 points in the SAF-A score (the activity part of the Steatosis, Activity, Fibrosis [SAF] scoring system that incorporates scores for ballooning and inflammation) without worsening of fibrosis; SAF-A scores range from 0 to 4, with higher scores indicating more-severe disease activity. Secondary end points included resolution of NASH and regression of fibrosis. RESULTS A total of 247 patients underwent randomization, of whom 103 (42%) had type 2 diabetes mellitus and 188 (76%) had significant (moderate) or advanced fibrosis. The percentage of patients who had a decrease of at least 2 points in the SAF-A score without worsening of fibrosis was significantly higher among those who received the 1200-mg dose, but not among those who received the 800-mg dose, of lanifibranor than among those who received placebo (1200-mg dose vs. placebo, 55% vs.33%, P = 0.007; 800-mg dose vs. placebo, 48% vs. 33%, P = 0.07). The results favored both the 1200-mg and 800-mg doses of lanifibranor over placebo for resolution of NASH without worsening of fibrosis (49% and 39%, respectively, vs. 22%), improvement in fibrosis stage of at least 1 without worsening of NASH (48% and 34%, respectively, vs. 29%), and resolution of NASH plus improvement in fibrosis stage of at least 1 (35% and 25%, respectively, vs. 9%). Liver enzyme levels decreased and the levels of the majority of lipid, inflammatory, and fibrosis biomarkers improved in the lanifibranor groups. The dropout rate for adverse events was less than 5% and was similar across the trial groups. Diarrhea, nausea, peripheral edema, anemia, and weight gain occurred more frequently with lanifibranor than with placebo. CONCLUSIONS In this phase 2b trial involving patients with active NASH, the percentage of patients who had a decrease of at least 2 points in the SAF-A score without worsening of fibrosis was significantly higher with the 1200-mg dose of lanifibranor than with placebo. These findings support further assessment of lanifibranor in phase 3 trials. (Funded by Inventiva Pharma; NATIVE ClinicalTrials.gov number, NCT0300807

    The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies.

    Get PDF
    AIMS: Non-alcoholic fatty liver disease (NAFLD) is a complex disease trait where genetic variations and environment interact to determine disease progression. The association of PNPLA3 with advanced disease has been consistently demonstrated but many other modifier genes remain unidentified. In NAFLD, increased fatty acid oxidation produces high levels of reactive oxygen species. Manganese-dependent superoxide dismutase (MnSOD), encoded by the SOD2 gene, plays an important role in protecting cells from oxidative stress. A common non-synonymous polymorphism in SOD2 (C47T; rs4880) is associated with decreased MnSOD mitochondrial targeting and activity making it a good candidate modifier of NAFLD severity. METHODS: The relevance of the SOD2 C47T polymorphism to fibrotic NAFLD was assessed by two complementary approaches: we sought preferential transmission of alleles from parents to affected children in 71 family trios and adopted a case-control approach to compare genotype frequencies in a cohort of 502 European NAFLD patients. RESULTS: In the family study, 55 families were informative. The T allele was transmitted on 47/76 (62%) possible occasions whereas the C allele was transmitted on only 29/76 (38%) occasions, p=0.038. In the case control study, the presence of advanced fibrosis (stage>1) increased with the number of T alleles, p=0.008 for trend. Multivariate analysis showed susceptibility to advanced fibrotic disease was determined by SOD2 genotype (OR 1.56 (95% CI 1.09-2.25), p=0.014), PNPLA3 genotype (p=0.041), type 2 diabetes mellitus (p=0.009) and histological severity of NASH (p=2.0Ă—10(-16)). CONCLUSIONS: Carriage of the SOD2 C47T polymorphism is associated with more advanced fibrosis in NASH

    Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases

    Get PDF
    Key physiological functions of the liver, including glucose and lipid metabolism, become disturbed in the setting of non-alcoholic fatty liver disease (NAFLD) and may be associated with a systemic inflammatory 'milieu' initiated in part by liver-secreted cytokines and molecules. Consequently, the pathophysiological effects of NAFLD extend beyond the liver with a large body of clinical evidence demonstrating NAFLD to be independently associated with both prevalent and incident cardiovascular disease (CVD), chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM). The magnitude of risk of developing these extrahepatic diseases parallels the underlying severity of NAFLD, such that patients with non-alcoholic steatohepatitis (NASH) appear to be at greater risk of incident CVD, CKD and T2DM than those with simple steatosis. Other modifiers of risk may include genetic variants (eg, patatin-like phospholipase domain-containing 3 and trans-membrane 6 superfamily member 2 polymorphisms), visceral adipose tissue accumulation, dietary intake and the gut microbiome. Emerging data also suggest that NAFLD may be a risk factor for colonic neoplasia and reduced bone mineral density, especially among men. Importantly, improvement/resolution of NAFLD is associated with a reduced incidence of T2DM and improved kidney function, adding weight to causality and suggesting liver focused treatments may reduce risk of extrahepatic complications. Awareness of these associations is important for the clinicians such that CVD risk factor management, screening for T2DM and CKD are part of the routine management of patients with NAFLD
    • …
    corecore