17 research outputs found

    MIP/Aquaporin 0 Represents a Direct Transcriptional Target of PITX3 in the Developing Lens

    Get PDF
    The PITX3 bicoid-type homeodomain transcription factor plays an important role in lens development in vertebrates. PITX3 deficiency results in a spectrum of phenotypes from isolated cataracts to microphthalmia in humans, and lens degeneration in mice and zebrafish. While identification of downstream targets of PITX3 is vital for understanding the mechanisms of normal ocular development and human disease, these targets remain largely unknown. To isolate genes that are directly regulated by PITX3, we performed a search for genomic sequences that contain evolutionarily conserved bicoid/PITX3 binding sites and are located in the proximity of known genes. Two bicoid sites that are conserved from zebrafish to human were identified within the human promoter of the major intrinsic protein of lens fiber, MIP/AQP0. MIP/AQP0 deficiency was previously shown to be associated with lens defects in humans and mice. We demonstrate by both chromatin immunoprecipitation and electrophoretic mobility shift assay that PITX3 binds to MIP/AQP0 promoter region in vivo and is able to interact with both bicoid sites in vitro. In addition, we show that wild-type PITX3 is able to activate the MIP/AQP0 promoter via interaction with the proximal bicoid site in cotransfection experiments and that the introduction of mutations disrupting binding to this site abolishes this activation. Furthermore, mutant forms of PITX3 fail to produce the same levels of transactivation as wild-type when cotransfected with the MIP/AQP0 reporter. Finally, knockdown of pitx3 in zebrafish affects formation of a DNA-protein complex associated with mip1 promoter sequences; and examination of expression in pitx3 morphant and control zebrafish revealed a delay in and reduction of mip1 expression in pitx3-deficient embryos. Therefore, our data suggest that PITX3 is involved in direct regulation of MIP/AQP0 expression and that the alteration of MIP/AQP0 expression is likely to contribute to the lens phenotype in cataract patients with PITX3 mutations

    [Clinical and genetic aspects of combined pituitary hormone deficiencies]

    No full text
    International audienceDEFINITION: Congenital hypopituitarism is characterized by multiple pituitary hormone deficiency, including somatotroph, thyrotroph, lactotroph, corticotroph or gonadotroph deficiencies, due to mutations of pituitary transcription factors involved in pituitary ontogenesis. INCIDENCE: Congenital hypopituitarism is rare compared with the high incidence of hypopituitarism induced by pituitary adenomas, transsphenoidal surgery or radiotherapy. The incidence of congenital hypopituitarism is estimated to be between 1:3000 and 1:4000 births. CLINICAL SIGNS: Clinical presentation is variable, depending on the type and severity of deficiencies and on the age at diagnosis. If untreated, main symptoms include short stature, cognitive alterations or delayed puberty. DIAGNOSIS: A diagnosis of combined pituitary hormone deficiency (CPHD) must be suspected when evident causes of hypopituitarism (sellar tumor, postsurgical or radioinduced hypopituitarism...) have been ruled out. Clinical, biological and radiological work-up is very important to better determine which transcription factor should be screened. Confirmation is provided by direct sequencing of the transcription factor genes. AETIOLOGY: Congenital hypopituitarism is due to mutations of several genes encoding pituitary transcription factors. Phenotype varies with the factor involved: PROP1 (somatolactotroph, thyrotroph, gonadotroph and sometimes corticotroph deficiencies; pituitary hyper and hypoplasia), POU1F1 (somatolactotroph and thyrotroph deficiencies, pituitary hypoplasia), HESX1 (variable pituitary deficiencies, septo-optic dysplasia), and less frequently LHX3 (somatolactotroph, thyrotroph and gonadotroph deficiencies, limited head and neck rotation) and LHX4 (variable pituitary deficiencies, ectopic neurohypophysis, cerebral abnormalities). MANAGEMENT: An appropriate replacement of hormone deficiencies is required. Strict follow-up is necessary because patients develop new deficiencies (for example late onset corticotroph deficiency in patients with PROP1 mutations). GENETIC COUNSELLING: Type of transmission varies with the factor and the mutation involved (recessive transmission for PROP1 and LHX3, dominant for LHX4, autosomal or recessive for POU1F1 and HESX1). PROGNOSIS: It is equivalent to patients without pituitary deficiencies if treatment is started immediately when diagnosis is confirmed, and if a specialized follow-up is performed

    A novel dysfunctional LHX4 mutation with high phenotypical variability in patients with hypopituitarism.

    No full text
    International audienceCONTEXT: LHX4 is a LIM homeodomain transcription factor involved in pituitary ontogenesis. Only a few heterozygous LHX4 mutations have been reported to be responsible for congenital pituitary hormone deficiency. SUBJECTS AND METHODS: A total of 136 patients with congenital hypopituitarism associated with malformations of brain structures, pituitary stalk, or posterior pituitary gland was screened for LHX4 mutations. RESULTS: Three novel allelic variants that cause predicted changes in the protein sequence of LHX4 (2.3%) were found (p.Thr99fs, p.Thr90Met, and p.Gly370Ser). On the basis of functional studies, p.Thr99fs mutation was responsible for the patients' phenotype, whereas p.Thr90Met and p.Gly370Ser were likely polymorphisms. Patients bearing the heterozygous p.Thr99fs mutation had variable phenotypes: two brothers presented somato-lactotroph and thyrotroph deficiencies, with pituitary hypoplasia and poorly developed sella turcica; the youngest brother (propositus) also had corpus callosum hypoplasia and ectopic neurohypophysis; their father only had somatotroph deficiency and delayed puberty with pituitary hyperplasia. Functional studies showed that the mutation induced a complete loss of transcriptional activity on POU1F1 promoter and a lack of DNA binding. Cotransfection of p.Thr99fs mutant and wild-type LHX4 failed to evidence any dominant negative effect, suggesting a mechanism of haploinsufficiency. We also identified prolactin and GH promoters as potential target genes of LHX4 and found that the p.Thr99fs mutant was also unable to transactivate these promoters. CONCLUSIONS: The present report describes three new exonic LHX4 allelic variants with at least one being responsible for congenital hypopituitarism. It also extends the phenotypical heterogeneity associated with LHX4 mutations, which includes variable anterior pituitary hormone deficits, as well as pituitary and extrapituitary abnormalities

    [Genetic aspects of growth hormone deficiency].

    No full text
    International audienceCongenital growth hormone deficiency (GHD) is a rare cause of growth delay. It should be suspected when other causes of hypopituitarism (sellar tumor, postsurgical or radioinduced hypopituitarism, etc.) have been ruled out. GHD can be isolated (IGHD) or associated with at least one other pituitary hormone deficiency (CPHD) including thyrotroph, lactotroph, corticotroph, or gonadotroph deficiencies. CPHD is caused by mutations of genes coding for pituitary transcription factors involved in pituitary ontogenesis or in the hypothalamic-pituitary axis. Clinical presentation varies, depending on the type and severity of GHD, the age at diagnosis, the association with other pituitary hormone deficiencies, or extrapituitary malformations. Clinical, biological, and radiological work-up is very important to determine for which transcription factor the patient should be screened. There is a wide variety of phenotypes depending on the transcription factor involved: PROP1 (somatolactotroph, thyrotroph, gonadotroph, and sometimes corticotroph deficiencies ; pituitary hyper- or hypoplasia), POU1F1 (somatolactotroph and thyrotroph deficiencies, pituitary hypoplasia), HESX1 (variable pituitary deficiencies, septo-optic dysplasia), and less frequently LHX3 (somatolactotroph, thyrotroph, and gonadotroph deficiencies, deafness, and limited head and neck rotation), LHX4 (variable pituitary deficiencies, ectopic neurohypophysis, cerebral abnormalities), and OTX2 (variable pituitary deficiencies, ectopic neurohypophysis, ocular abnormalities). Mutations of PROP1 remain the first identified cause of CPHD, and as a consequence the first to be sought. POU1F1 mutations should be looked for in the postpubertal population presenting with GH/TSH deficiencies and no extrapituitary malformations. Once genetic diagnosis has been concluded, a strict follow-up is necessary because patients can develop new deficiencies (for example, late-onset corticotroph deficiency in patients with PROP1 mutations). Identification of gene defects allows early treatment of pituitary deficiency and prevention of their potentially lethal consequences. If untreated, the main symptoms include short stature, cognitive alterations, or delayed puberty. An appropriate replacement of hormone deficiencies is therefore required. Depending on the type of transmission (recessive transmission for PROP1 and LHX3, dominant for LHX4, autosomal dominant or recessive for POU1F1 and HESX1), genetic counseling might be proposed. Genotyping appears highly beneficial at an individual and familial level

    Pituitary transcription factors : from congenital deficiencies to gene therapy.

    No full text
    International audienceDespite the existence of interspecies phenotypic variability, animal models have yielded valuable insights into human pituitary diseases. Studies on Snell and Jackson mice known to have growth hormone, prolactin and thyroid-stimulating hormone deficiencies involving the hypoplastic pituitary gland have led to identifying alterations of the pituitary specific POU homeodomain Pit-1 transcription factor gene. The human phenotype associated with rare mutations in this gene was found to be similar to that of these mice mutants. Terminal differentiation of lactotroph cells and direct regulation of the prolactin gene both require interactions between Pit-1 and cell type specific partners, including panpituitary transcriptional regulators such as Pitx1 and Pitx2. Synergistic activation of the prolactin promoter by Pitx factors and Pit-1 is involved not only in basal condition, but also in responsiveness to forskolin, thyrotrophin-releasing-hormone and epidermal growth factor. In corticotroph cells, Pitx1 interacts with Tpit. Tpit mutations have turned out to be the main molecular cause of neonatal isolated adrenocorticotrophin deficiency. This finding supports the idea that Tpit plays an essential role in the differentiation of the pro-opiomelanocortin pituitary lineage. The effects of Pit-1 are not restricted to hormone gene regulation because this factor also contributes to cell division and protects the cell from programmed cell death. Lentiviral vectors expressing a Pit-1 dominant negative mutant induced time- and dose-dependent cell death in somatotroph and lactotroph adenomas in vitro. Gene transfer by lentiviral vectors should provide a promising step towards developing an efficient specific therapeutic approach by which a gene therapy programme for treating human pituitary adenomas could be based
    corecore