183 research outputs found

    Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue, one of the most important arboviral diseases of humans, may cause severe systemic disease. Although dengue virus (DENV) has been considered to be a non-neurotropic virus, dengue infection has been associated recently with a series of neurological syndromes, including encephalitis. In this work, we evaluated behavioral changes and inflammatory parameters in C57BL/6 mice infected with non-adapted dengue virus 3 (DENV-3) genotype I.</p> <p>Methods</p> <p>C57BL/6 mice received 4 × 10<sup>3 </sup>PFU of DENV-3 by an intracranial route. We evaluated the trafficking of leukocytes in brain microvasculature using intravital microscopy, and evaluated chemokine and cytokine profiling by an ELISA test at 3 and 6 days post infection (p.i.). Furthermore, we determined myeloperoxidase activity and immune cell populations, and also performed histopathological analysis and immunostaining for the virus in brain tissue.</p> <p>Results</p> <p>All animals developed signs of encephalitis and died by day 8 p.i. Motor behavior and muscle tone and strength parameters declined at day 7 p.i. We observed increased leukocyte rolling and adhesion in brain microvasculature of infected mice at days 3 and 6 p.i. The infection was followed by significant increases in IFN-γ, TNF-α, CCL2, CCL5, CXCL1, and CXCL2. Histological analysis showed evidence of meningoencephalitis and reactive gliosis. Increased numbers of neutrophils, CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells were detected in brain of infected animals, notably at day 6 p.i. Cells immunoreactive for anti-NS-3 were visualized throughout the brain.</p> <p>Conclusion</p> <p>Intracerebral infection with non-adapted DENV-3 induces encephalitis and behavioral changes that precede lethality in mice.</p

    Trypanosoma brucei PUF9 Regulates mRNAs for Proteins Involved in Replicative Processes over the Cell Cycle

    Get PDF
    Many genes that are required at specific points in the cell cycle exhibit cell cycle–dependent expression. In the early-diverging model eukaryote and important human pathogen Trypanosoma brucei, regulation of gene expression in the cell cycle and other processes is almost entirely post-transcriptional. Here, we show that the T. brucei RNA-binding protein PUF9 stabilizes certain transcripts during S-phase. Target transcripts of PUF9—LIGKA, PNT1 and PNT2—were identified by affinity purification with TAP-tagged PUF9. RNAi against PUF9 caused an accumulation of cells in G2/M phase and unexpectedly destabilized the PUF9 target mRNAs, despite the fact that most known Puf-domain proteins promote degradation of their target mRNAs. The levels of the PUF9-regulated transcripts were cell cycle dependent, peaking in mid- to late- S-phase, and this effect was abolished when PUF9 was targeted by RNAi. The sequence UUGUACC was over-represented in the 3′ UTRs of PUF9 targets; a point mutation in this motif abolished PUF9-dependent stabilization of a reporter transcript carrying the PNT1 3′ UTR. LIGKA is involved in replication of the kinetoplast, and here we show that PNT1 is also kinetoplast-associated and its over-expression causes kinetoplast-related defects, while PNT2 is localized to the nucleus in G1 phase and redistributes to the mitotic spindle during mitosis. PUF9 targets may constitute a post-transcriptional regulon, encoding proteins involved in temporally coordinated replicative processes in early G2 phase

    Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina

    Get PDF
    The bark of Anadenanthera peregrina (L.) Speg and Anadenanthera colubrina (Vell.) Brenan were characterized in relation to anatomical and chemical features. The barks were similar and included a thin conducting phloem, a largely dilated and sclerified non-conducting phloem, and a rhyridome with periderms with thin phellem interspersed by cortical tissues. Only small differences between species were observed that cannot be used alone for taxonomic purposes. The summative chemical composition of A. peregrina and A. colubrina was respectively: 8.2% and 7.7% ash; 28.8% and 29.3% extractives; 2.4% and 2.6% suberin; and 18.9% lignin. The monosaccharide composition showed the predominance of glucose (on average 82% of total neutral sugars) and of xylose (9%). The ethanol-water extracts of A. peregrina and A. colubrina barks included a high content of phenolics, respectively: total phenolics 583 and 682 mg GAE/g extract; 148 and 445 mg CE/g extract; tannins 587 and 98 mg CE/g extract. The antioxidant activity was 238 and 269 mg Trolox/g extract. The barks of the Anadenanthera species are a potential source of polar extractives that will represent an important valorization and therefore contribute to improve the overall economic potential and sustainability of A. peregrina and A. colubrinainfo:eu-repo/semantics/publishedVersio
    corecore