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Abstract

The bark of Anadenanthera peregrina (L.) Speg and Anadenanthera colubrina (Vell.) Bre-

nan were characterized in relation to anatomical and chemical features. The barks were

similar and included a thin conducting phloem, a largely dilated and sclerified non-conduct-

ing phloem, and a rhyridome with periderms with thin phellem interspersed by cortical tis-

sues. Only small differences between species were observed that cannot be used alone for

taxonomic purposes. The summative chemical composition of A. peregrina and A. colubrina

was respectively: 8.2% and 7.7% ash; 28.8% and 29.3% extractives; 2.4% and 2.6%

suberin; and 18.9% lignin. The monosaccharide composition showed the predominance of

glucose (on average 82% of total neutral sugars) and of xylose (9%). The ethanol-water

extracts of A. peregrina and A. colubrina barks included a high content of phenolics, respec-

tively: total phenolics 583 and 682 mg GAE/g extract; 148 and 445 mg CE/g extract; tannins

587 and 98 mg CE/g extract. The antioxidant activity was 238 and 269 mg Trolox/g extract.

The barks of the Anadenanthera species are a potential source of polar extractives that will

represent an important valorization and therefore contribute to improve the overall economic

potential and sustainability of A. peregrina and A. colubrina

Introduction

Anadenanthera is a small neotropical genus from South America with only two species: Ana-
denanthera peregrina (L.) Speg and Anadenanthera colubrina (Vell.) Brenan [1]. They belong

to the family Leguminosae, subfamily Mimosaceae, and can grow in areas from savannah to

dry rainforest. In Brazil, where they are usually named “angico”, they occur predominantly in

seasonal forests and riparian galleries [2, 3, 4].

Both species have a strong morphological similarity and their differentiation usually

requires the examination of flowers with buds, fruits and leaves [1, 4]. The bark may provide

taxonomic information when these bodies are not available either in herbaria or in the field.
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Although the external macroscopic characteristics of barks is important and is often used for

identification, in the case of similar species, as it is the case of A. peregrina and A. colubrina, it

is necessary to have a microscopic knowledge of the internal structure [5]. This has been

shown by e.g. [6] for several Eucalyptus species, [7] who distinguished six bark types within the

Cassinoideae subfamily, and [8] to distinguish Lebeckia genera.

Both A. peregrina and A. colubrina are used for timber, charcoal and as firewood, as well as

in popular medicine [9]. The wood has high density, resistance and outdoor durability, as well

as a smooth lustrous surface with high decorative value, and is used for flooring and in build-

ing and naval construction [10, 3].

Very few studies have been published on the stem characterization of the species of this

genus. The wood anatomy and some physical properties were described for A. peregrina [10,

11] and the wood anatomy for A. colubrina [12]. As regards bark anatomy, [13] gave informa-

tion of anatomy and hystochemistry of secretory ducts in the bark of A. peregrina, [14] and

[15] gave general information of various genus of Leguminosae, and [16] examined 28 species

of the subfamily Caesalpinioideae, Mimosaceae and Papilionoideae from Brazil, including the

genus Adenanthera and A. peregrina.

More information exists on some chemical features of the barks of these species, since they

have a high content of tannins that are used for the leather and dyeing industries (17, 18, 19,

4]. They are also used in the popular medicine for treatment of respiratory and lung infections,

and against diarrhea [20]. Some phytochemical, pharmacological and toxicological studies of

bark extracts and tannin quantification have been made for A. peregrina [21, 22] and A. colu-
brina [23, 24, 25, 26, 27].

Barks are a subject of recent research on their structural and chemical characterization tar-

geting their potential as a feedstock for biorefineries. Barks from various species were studied

e.g. Eucalyptus spp. [28, 29, 30], Pseudotsuga menziesii [31], Quercus cerris [32], Tectona
grandis [33]. Overall it has been shown that knowledge on the anatomy and chemical composi-

tion of the barks is essential for designing their fractionation and valorization routes.

The barks of A. peregrina and A. colubrina are studied here for the first time with a compre-

hensive characterization of their structural and anatomical features as well as of the chemical

composition, including polar extracts and their antioxidant properties.

The objective is dual: i) to see if the detailed information on the bark may be used as a taxo-

nomical tool for species identification; and ii) to establish a background information for bark

valorization to be used for targeting processing routes and products.

Material and methods

No specific permits were required for the collection of bark of the species studied, since these

were collected in the experimental field of the Federal University of Lavras and the non-

destructive method was used. The field studies did not involve endangered or protected

species.

Site characterization and sampling

The barks from three trees of Anadenanthera peregrina (L.) Speg. and of Anadenanthera colu-
brina (Vell.) Brenan were collected. The trees were growing in a remaining seasonal semi-

deciduous mountain forest belonging to the Mata Atlântica bioma, located in the campus

fields of the Federal University of Lavras, in the southern part of Minas Gerais, Brazil (21˚14’S;

45˚00’W, mean altitude 900 m). The climate is mesothermic with mild summers and dry win-

ters (Cwb following the Köppen classification) with a mean annual temperature of 19.4˚C and

1530 mm annual precipitation.
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The trees were randomly selected and characterized: A. peregrina trees were 12–14 years

old, with 12.5–14 cm diameter at breast height (dbh) and 5–7 m height; A. colubrina trees were

13–15 years old, with 11–14.5 cm dbh, and 6.5–8 m height.

The trees were harvested and the bark removed by separation from the wood by making an

incision cut and pulling out. The samples used for analysis were taken from the lower part of

the stem until 1.3 m of height.

Anatomical characterization

The samples were impregnated with DP 1500 polyethylene glycol and transversal, tangential

and radial microscopic sections were prepared from cambium to the outside [34, 35]. The pro-

portion of cell types was determined using a 48-point grid on three images per sample on

transverse sections from cambium to the outside. Sieve tubes were only quantified in the non-

collapsed phloem. The length, width and wall thickness of fibres and sieve tube elements were

measured in macerated samples.

The microscopic observations were made with a Leica DMLA optical microscope, the pho-

tomicrographs were taken with a Nikon FXA camera and the measurements done by using the

Leica Qwin V 3.5.0 software. Terminology followed [36].

The macroscopic observation was made on the cross-section of the samples after surface

sanding using a magnifying glass Leica MZ6 and photographed with a digital Samsung 10 MP

L201 camera.

Chemical composition

The bark samples were ground and the fraction 40–60 mesh used for chemical analysis.

A bark composite sample of the three trees per species was made and carefully homogenized

before analysis. Determination of ash followed TAPPI standards (T 211 om-93), extractives

were determined gravimetrically after successive Soxhlet extractions with dichloromethane, eth-

anol and water during 6 h, 16 h and 16 h, respectively (TAPPI Standard T204 om-88 and T207

om-93). The depolymerization and removal of suberin was made on the extractive-free samples

using sodium methoxide in methanol [37].

The solid residue remaining after suberin depolymerization was used for determination of

lignin and carbohydrates by acid hydrolysis. Acid insoluble (Klason) and acid soluble lignin

were determined according to TAPPI T 222 om88 and TAPPI UM 250 standards, respectively.

The composition of polysaccharides was evaluated after hydrolysis by determining the content

in neutral monossacharides (rhamnose, arabinose, xylose, galactose, mannose and glucose) in

the hydrolysate from the lignin analysis using high pressure ion-exchange chromatography

with a pulsed amperometric detector (HPIC-PAD). The compounds were separated in a Dio-

nex ICS-3000 system, with an Aminotrap plus Carbopac PA10 column (250 x 4 mm) using a

linear gradient of NaOH and CH3COONa solution (0–20 min 18 mM NaOH; 20–25 min 50

mM NaOH+170 mM CH3COONa; 25–40 min 50 mM NaOH+170 mM CH3COONa) as elu-

ent at a flow rate of 1mL/min; the column temperature was maintained at 30˚C. All the chemi-

cal determinations were made on duplicate samples.

Phenolic content of bark extracts

Extraction was carried out with ethanol-water (50%) for 60 min at 50˚C using an ultrasonic

bath and the extraction yield was calculated as the percent mass loss of the starting material.

The total amount of soluble phenolics was estimated by the Folin–Ciocalteu method using

gallic acid as standard [38]. Total flavonoids were quantified by an aluminium chloride colori-

metric assay using catechin as a standard [39] and the proanthocyanidins content (condensed
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tannins) was determined by the vanillin-H2SO4 method using catechin as a standard [40]. The

experimental procedure is described in detail in [30].

Antioxidant activity of bark extracts

The antioxidant activity was assessed by the DPPH free radical assay [41] following a proce-

dure described before [30]. The antioxidant activity was expressed as IC50 values and also as in

terms of Trolox equivalents (TEAC).

Results

Bark anatomy

The bark anatomy of A. peregrina and A. colubrina was similar. The anatomical bark features

of both species are represented in Figs 1, 2 and 3. The macroscopic outer aspect of A. peregrina
and A. colubrina barks was similar. The barks are brown and thick (6.5–17 mm and 5–12.1

mm respectively), wrinkled and irregularly scaly with sharp hardened outgrowths. The bark of

A. colubrina was more difficult to remove from the trunk than that of A. peregrina that could

be easily pulled out.

The bark included the rhytidome and the phloem; the nonconducting phloem was perfectly

distinct from the conducting phloem by a lighter colour. Annual growth increments were not

detected. In both species, the rhytidome was composed by several periderms that developed

sequentially straight to undulated and were interspersed with cortical parenchyma cells (Figs

1A and 2A). In each periderm the phellem consisted of tabular cells with thick tangential walls

and the phelloderm included layers of rectangular to round cells, some with thin walls and oth-

ers uniformly thickened and even sclerified into sclereids (Figs 1D and 2D). These sclereids

Fig 1. Bark of A. peregrina. A) rhytidome included sequentially periderms (Pr) interspersed with cortical cells (Cx); B) outer phloem showing the ring of

sclerified cells (RSCL) which bounded inferiorly the cortex; dilatation tissue (Dt) from the wedged-shaped ray; ray (R) slightly distorted and dilated and

stretched sieve tubes elements (arrows); C) Conducting phloem (black annotation) with tangential bands of the axial parenchyma cells (P), tangential bands

of fibres (F) and sieve tube elements (St); nonconducting phloem marked by the collapsed of sieve tubes elements (arrow); D) Periderm with thick phellem

cells (Phm), phellogen (arrow) and sclereids of the phelloderm cells (Phd); E) groups of sclereids (GScl) in dilatation tissue; F) Sieve tube elements (St) with

compound sieve plates (PL) and lateral sieve areas (arrow); multiseriate rays (R) in tangential section. Scale bar: A, B, C, E = 150 μm; D, F = 25 μm.

https://doi.org/10.1371/journal.pone.0189263.g001
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may give a certain pattern to the phelloderm either forming irregular groups or a somewhat

concentering ring, more evident in A. peregrina
The cortical parenchyma cells, derived from the cortex i.e. the phellogen developed in the

cortex, were arranged without intercellular spaces, particularly obvious in the outgrowths of A.

colubrina (Fig 2A), and could be confused as phellem cells of the periderm. In fact the peri-

derm of A. peregrina and A. colubrina included only a small proportion of suberized phellem

cells.

Below the innermost periderm, there was a zone with cortical-like cells, here called "cortex",

where cells were dilated by tangential expansion and also sclerified forming groups of sclereids

(Fig 2B); this area is inner bordered by a ring of sclerified cells that make the transition to the

phloem (Figs 2B and 3B).

A. peregrina and A. colubrina bark structure was similar also concerning: 1) the demarca-

tion between non-conducting and conducting phloem that was gradual and marked by col-

lapsed sieve tube elements; 2) phloem stratification; 3) type and position of sieve plates; 4)

dilatation tissue restrict to the rays; 5) arrangement and proportion of sclereids; and 6) pres-

ence of secretory cells.

The conducting phloem was narrow (about 20 cell rows) and included the sieve-tube ele-

ments with turgid companion cells, axial and radial parenchyma cells and fibers (Fig 1C). The

sieve-tube elements (corresponding to approximately 2% in A. peregrina and A. colubrina)

Fig 2. Bark of A. colubrina. A) rhytidome included sequentially periderms (Pr) interspersed with cortical cells (Cx); B) outer phloem near the periderm (Pr)

showing the ring of sclerified cells (RSCL) which bounded inferiorly the cortex (Cx); dilatation tissue (Dt) and groups of sclereids (GScl); C) dilatation tissue

(Dt) in form of wedged-shaped ray; bands of the axial parenchyma cells (P), tangential bands of fibres (F), rays (R) and stretched sieve tube elements (arrow)

in the nonconducting phloem; D) Periderm with thick phellem cells (Phm), phellogen (arrow) and phelloderm cells (Phd) with thin walls and others uniformly

thicken; E) Secretory cells (Cs) bounded by stretched sieve tube elements (arrow). Scale bar: A, B, C = 150 μm; D, E = 25 μm.

https://doi.org/10.1371/journal.pone.0189263.g002

Bark anatomy, chemical composition and ethanol-water extract composition of A. peregrina and A. colubrina

PLOS ONE | https://doi.org/10.1371/journal.pone.0189263 December 27, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0189263.g002
https://doi.org/10.1371/journal.pone.0189263


were solitary or in small groups of 2 or 3, and scattered among axial parenchyma cells. The

sieve plates are compound scalariform and inclined, with 5–10 sieve areas (Fig 1F); lateral

sieve tube walls were observed with pores clustered in sieve areas (Fig 1F). The diameter and

length of sieve-tube elements were similar in both species: 25.0–28.5 μm and 275–326 μm in A.

peregrina and 27.3–31.9 μm and 320–324 μm in A. colubrina, respectively; Costa et al. (1997)

found longer conducting cells in adult trees of A peregrina varying from although with similar

diameters (367–502 μm and 18–30 μm respectively).

The axial parenchyma cells (34% in A. peregrina and 23% in A. colubrina) were round in

more or less continuous bands of 2–3 cells in A. peregrina and 2–6 cells in A. colubrina that

alternate with continuous tangential bands of fibers (Figs 1C and 2C).

The fibers (35% in A. peregrina and 24% in A. colubrina) were rounded polygonal in trans-

verse section and arranged in tangential bands (3–4 cells wide in A. peregrina and 2–3 cells

wide in A. colubrina), interrupted by the rays. The fibers were slightly longer and thinner in A.

peregrina (1201 μm long and 6.4 μm thick) than in A. colubrina (1187 μm and 6.8 μm).

The rays (13% in A. peregrina and 14% in A. colubrina) were non-storied; mostly multiseri-

ate (2–4 cells), homocelular with procumbent ceIls (Fig 1F), and more or less straight until the

beginning of the dilatation growth. The number of cells in the rays was the same in both spe-

cies (7–28 in height and 6–12 cells/mm).

The non-conducting phloem is characterized by the collapsed sieve-tube elements (Figs 1B,

1C and 2C) and the dilatation growth. In A. peregrina and A. colubrina the dilatation is evident

mainly in the outer phloem and results mostly through the anticlinal ray cell division, giving

rise to a slightly to dilated rays (Figs 1B, 2B and 2C); in minor extent axial and radial paren-

chyma cells also undergo some tangential dilatation.

The dilatation tissue represented about 12% in A. peregrina and 29%.in A. colubrina. Clus-

ters of sclereids occured resulting in conspicuous nodules of irregular or radial alignment

Fig 3. Mineral and organic inclusions in the bark. A) crystals (c) in chambered axial parenchyma cells; B) starch grains (arrow); C) crystals (arrows)

adjacent to the fibres (F); Phenolic compounds in nonconducting phloem (arrows, D) and in rhytidome (arrows, E). Scale bar: A, C E = 50 μm; B = 25 μm;

D = 150 μm.

https://doi.org/10.1371/journal.pone.0189263.g003
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(Figs 1E and 2B) with a characteristic pattern. Sclereids (4% in A. peregrina and 8% in A. colu-
brine) appeared isodiametric with a polylamellated and pitted wall. Sclereids constitute the

mechanical support for bark radial growth in addition that given by the fibers (higher in A.

peregrina).

In A. peregrina and A. colubrina, prismatic crystals occurred in chambered axial paren-

chyma cells (Fig 3A) and also adjacent to fibrous bands (Fig 3C). Single crystals were frequent

in sclerified cells of the phelloderm, mostly in A. colubrina.

Starch grains were observed in parenchyma cells of A. colubrina (Fig 3B) Phenolic deposits

of brown colour were particularly abundant through the bark, mainly in the rhytidome i.e.

phellem, phelloderm and cortex, and in the non-conducting phloem, arranged in tangential

rows or groups (Fig 3D and 3E). In both species, enlarged parenchyma cells (secretory cells)

were observed in nonconducting tissue arranged in groups (Figs 1F and 2E).

Chemical composition

Table 1 summarizes the chemical composition and the polysaccharides composition of the

barks of A. peregrina and A. colubrina. The chemical composition of the bark of both species

was similar. The content in extractives was very high at 29%, corresponding mainly to polar

extractives soluble in ethanol and water that represent 85% and 90%, respectively of the total

extractives. The suberin content was low corresponding on average to 2.5% of the barks.

Lignin content was on average 18.9% and polysaccharides 40%. The monosaccharide composi-

tion showed a predominance of glucose corresponding on average to 82% of the neutral

monosaccharides.

The hemicelluloses included mostly xylan i.e. xylose and arabinose accounted on average

for 8.8% and 2.6% of the total neutral monomeric sugars, respectively, but also galactomannan

Table 1. Summative chemical composition (% of dry bark), monosaccharide composition (% of total neutral monosaccharides) of the barks of

Anadenanthera peregrina and Anadenanthera colubrina.

A. peregrina A. colubrina

Chemical composition (% of bark)

Ash 8.2 7.7

Extractives

Total 28.8 29.3

Dichloromethane 3.0 2.8

Ethanol 21.0 22.5

Water 4.7 4.1

Suberin 2.4 2.6

Lignin

Total 18.8 18.9

Klason lignina 16.4 16.8

Soluble lignin 2.8 2.1

Polysacharides 41.8 41.5

Monosaccharide composition (% of total neutral monosaccharides)

Rhamnose 0.1 0.3

Arabinose 2.1 3.2

Xylose 8.7 8.9

Mannose 2.1 2.3

Galactose 4.1 4.1

Glucose 82.9 81.2

https://doi.org/10.1371/journal.pone.0189263.t001
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i.e. galactose and mannose represented on average 4.1% and 2.2%, respectively. The glucose/

xylose ratio was high at 9.5 for A. peregrina and 9.1 for A. colubrina. Both barks had a large

mineral content: 8.2% for A. peregrina and 7.7% for A. colubrina.

Phenolic content of bark extracts

The yield of ethanol-water extraction and the phenolic composition and anti-oxidant activity

of the bark extracts are given in Table 2. The extraction yield of 22.8% and 25.4% for the barks

of A. peregrina and A. colubrina respectively was very similar to the content of the polar extrac-

tives determined by sequential solvent extraction (Table 1).

There was a substantial difference in the extract composition between the two species. The

total phenolic content was high, especially for A. colubrina (682 mg GAE/g extract vs. 583 mg

GAE/g extract) that contained also substantially more flavonoids (445 mg CE/g extract vs. 148

mg CE/g extract). On the contrary, the tannin content was much higher in the A. peregrina
bark extract (587 mg CE/g extract vs. 98 mg CE/g extract). The antioxidant activity of both

bark extracts was similar corresponding on average to 253 mg Trolox g-1 extract or 59 mg Tro-

lox g-1 of bark.

Discussion

Anatomical features

A. peregrina and A. colubrina could be differentiated by the adhesion of the bark to the cam-

bium and xylem since the bark of A. peregrina could be pulled out easily. This difference,

which should be related with cambial features and has been referred for other species e.g. for

Eucalyptus spp. [28].

The bark anatomy of both Anadenanthera species was very similar. [15] also observed little

anatomical variation in the bark of different genus of Mimosaceae subfamily. The bark of A.

peregrina and A. colubrina showed overall common features: a conspicuous scaly rhytidome

with several periderms with little phellem development interspersed by cortical tissues. This

type of rhytidome with successive periderms including bands of cortical parenchyma was

described by [16] for A. peregrina and other species of the same family i.e. Bowdichia virgi-
lioides. These cortical parenchyma cells were particularly obvious in the outgrowths of A.colu-
brina (Fig 2A) and their form and radial alignment could mistake them with phellem cells of

the periderm. [15] also referred in cork of Mimosaceae and above the scale, the presence of

small cells which preserve their embryonic shape and meristematic state and may be able to

divide periclinally resembling phellogen cells; the little suberization of the cork was also

noticed by the same author.

Table 2. Ethanol-water extraction yield (% of dry bark), total phenolic content, tannins and flavonoids

content and antioxidant activity of the barks of Anadenanthera peregrina and Anadenanthera

colubrina.

A. peregrina A. colubrina

Extraction yield (% of bark)) 22.8 25.4

Total phenolic content (mg GAE g-1 of extract) 583.0 682.0

Flavonoids (mg catechin g-1 of extract) 148.4 445.3

Tannins (mg catechin g-1 of extract) 586.9 97.5

Antioxidant capacity TEAC (mg Trolox g-1 of extract) 237.6 268.6

Antioxidant capacity TEAC (mg Trolox g-1 of bark) 54.3 63.7

IC50 values (μg extract ml-1)* 13.1 13.5

https://doi.org/10.1371/journal.pone.0189263.t002
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The cortex below the innermost periderm featuring a more or less complete ring of irregu-

larly shaped sclereids was also noticed by [14], [15] and [16]. The phloem included a narrow

conducting region with anatomical features that were similar in both species and that in gen-

eral agree with the observations of [16] for the Mimosoideae. The nonconducting phloem

showed a conspicuous dilatation tissue formed by parenchyma cell division and expansion,

resulting from the phloem adjustment to tree radial growth [36] and are in agreement with

observations for the Leguminoseae by (15) and [16].

Thick walled sclereids were present in large proportion, especially in A. colubrina often

including large prismatic crystals. The presence of crystals accompanies sclerefication and con-

tributes to the mechanical strength of the bark [42, 15].

Numerous crystals were observed in the phloem of both species namely in the axial paren-

chyma close to the fibres (Fig 3A and 3C). Crystals in the axial parenchyma seem to be a char-

acteristic of the Mimosaceae subfamily [15] and were described for A. peregrina [43, 16].

Although some authors refer that crystals may have a diagnostic value to differentiate species

within a genus [44, 45, 46], [47] considers that variability is also large between individuals in

the same species. Starch grains were observed in parenchyma cells of A. colubrina (Fig 3B) and

their presence in the axial parenchyma in the majority of the studied species examined by [16].

A conspicuous feature of these barks was the presence of extensive phenolic deposits in e.g.

tanniferous cells especially in the rhytidome and in the non-conducting phloem (Fig 3D and

3E) that seemed overall more abundant in A. peregrina bark. This is clearly in agreement with

the traditional use of these barks as a tannin source, and with the chemical features as dis-

cussed further on.

Overall the anatomical structure of the barks of A. peregrina and A. colubrina was very simi-

lar and the small differences that were observed do not allow a bark based taxonomic differen-

tiation of both species.

Chemical composition

There are no previous studies and references on the chemical composition of the barks from

A. peregrina and A. colubrina. It is however known that they contain a large amount of tannins,

especially the bark of A. peregrina, and that they are used in the leather and dyeing industries

[17, 18, 19].

The determination of extractives (Table 1) confirms the high content of polar extractives

that can be extracted by an ethanolic aqueous solution (Table 2). The microscopic observations

also showed the high amount of deposits and inclusions that are a conspicuous feature of the

bark structure of these species (Fig 3D and 3E). It was also confirmed that the bark extract of

A. peregrina contains a much higher tannin content that represents about 59% of the extract

(in catechin equivalents) while tannins in the bark of A. colubrina represent only about 10% of

the extract (Table 2).

The valorization of A. peregrina bark is therefore certainly possible for production of tan-

nins that will represent approximately 17% of the bark (173.3 mg CE/g bark). The bark extract

of A. colubrina is very rich in total phenolics (ca. 68% in GAE of the extract) that include

mainly flavonoids (45% in CE of the extract) (Table 2). Flavonoids are also valued as bioactive

supplements and therefore their extraction from A. colubrina bark represents also a potential

valorization route. However the antioxidant properties of the bark extracts of both species are

only of moderate intensity with an average IC50 value of 13 mg ml-1 compared with 2 mg ml-1

for Trolox (Table 2).

Barks from other species may also contain a high proportion of extractives. For instance

28.1% and 28.3% for Eucalyptus grandis x urophyla and E. grandis, respectively [48] or 26.7%
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for Pseudotsuga menziesii [30]. The phenolic content of bark extracts is very variable between

species but usually below the values found here. For instance 386, 347 and 204 mg GAE/g

extract in barks of E. grandis, E. urograndis and E. maidenii, respectively [49], 80, 78, 66, 66, 38

and 25 mg GAE/g extract in barks of Acacia nilotica, Acacia catechu, Albizia lebbeck, Senna
tora, Saraca asoca and Caesalpinia sappan, respectively where the flavonoid content ranged

4–22 mg CE/g extract [50], 211–551 mg GAE/g extract in barks of various E. urophylla hybrids

[30] or 93, 165, 120 and 120 mg GAE/g extract in barks of Eugenia jambolana, Acacia nilotica,

Azadirachta indica and Terminalia arjuna, respectively where the flavonoid content ranged

21–49 mg CE/g extract [51]. Flavonoids represent 75 mg quercetin equivalent/g extracts in the

bark of Delonix elata [52]. Tannins in the barks of Alnus incana and A. glutinosa represent

respectively 43% and 34% of the extract [53].

Since the barks of A. peregrina and A. colubrina have a small proportion of phellem in their

periderms, their content in suberin is low (Table 1). Suberin is a typical structural component

of bark periderms where its presence is specific to the wall of phellem cells for which it is a

chemical fingerprint [31, 54, 55]. Therefore when the proportion of phellem in a bark is small,

then the content in suberin is also small. This has been shown for several species e.g. Pinus syl-
vestris and Picea abies [56], E. globulus [57] or Tectona grandis [33].

The main structural chemical components of the barks of A, peregrina and A. colubrina are

lignin, which represented 31.0% and 31.1% respectively of the extractive and ash-free barks,

and by cellulose and hemicelluloses. Xylan and galactoglucomannans should be the major

hemicelluloses, while glucose was the predominant monosaccharide obtained after acid hydro-

lysis (Table 2). It should be noted that only neutral monosaccharides were determined and it is

to expect the presence in the hemicelluloses of acetyl groups and uronic acids.

The high mineral content of both barks should result from the frequent presence of crystals,

presumably of calcium oxalate, that are clearly observed namely in the cells of the axial paren-

chyma (Fig 3A and 3C).

Conclusions

The barks of the two species of the genus Anadenanthera (A. peregrina and A. colubrina) are

very similar in relation to the structural arrangement, the type and morphology of cells, and

tissue distribution in phloem, rhytidome and periderms. Both species were distinguished by

the sclereids in the phelloderm forming a more obvious ring in A peregrina and by the type of

cortical parenchyma cells in the rhytidome in A. colubrina that resemble phellem cells. How-

ever the bark anatomy cannot per se be used as a taxonomic indicator.

The chemical composition of A. peregrina and A. colubrina barks was studied for the first

time. The most striking characteristic is the very high content of polar extractives rich in phe-

nolic compounds and with good antioxidant activities. Significant differences were found in

the content of polar extractives with A. peregrina bark showing a higher content of tannins and

A. colubrina a higher content of total phenolics and flavonoids.

Their extraction will represent an important valorization of these barks and therefore con-

tribute to improve the overall economic potential and sustainability of A. peregrina and A.

colubrina.
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Visualization: Graciene S. Mota, Caroline J. Sartori, Isabel Miranda, Teresa Quilhó, Fábio
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