15 research outputs found

    Safety and Immunogenicity of Live Oral Cholera and Typhoid Vaccines Administered Alone or in Combination with Antimalarial Drugs, Oral Polio Vaccine, or Yellow Fever Vaccine

    Get PDF
    The effects of concomitant administration of antimalarial drugs, oral polio vaccine, or yellow fever vaccine on the immune response elicited by the Vibrio cholerae CVD103-HgR and Salmonella typhi Ty21a live oral vaccines were investigated. Healthy adults were immunized with CVD103- HgR alone or combined with Ty21a. Subjects were randomized to simultaneously receive mefloquine, chloroquine or proguanil, or oral polio or yellow fever vaccine. The vibriocidal antibody seroconversion rate was significantly reduced (P = .008) only in the group that received chloroquine with the CVD103-HgR. The geometric mean vibriocidal antibody titer was significantly decreased in the groups that received chloroquine (P = .001) or mefloquine (P = .02) compared with titers in groups that received CVD103-HgR alone. However, similar immunosuppressive effects were not observed in the groups immunized with Ty21a and CVD103-HgR. Only the concomitant administration of proguanil effected a significant (P = .013) decline in the anti-S. typhi lipopolysaccharide antibody response. These results indicate that chloroquine and proguanil should not be simultaneously administered with the CVD103-HgR and Ty21a vaccine strains, respectivel

    Effects of Age, Race, and Ethnicity on the Optic Nerve and Peripapillary Region Using Spectral-Domain OCT 3D Volume Scans

    Get PDF
    Purpose: To evaluate the effects of age, race, and ethnicity on the optic nerve and peripapillary retina using spectral-domain optical coherence tomography (SD-OCT) three-dimensional (3D) volume scans in normal subjects. Methods: This is a cross-sectional study performed at a single institution in Boston. All patients received retinal nerve fiber layer (RNFL) scans and an optic nerve 3D volume scan. The SD-OCT software calculated peripapillary RNFL thickness, retinal thickness (RT), and retinal volume (RV). Custom-designed software calculated neuroretinal rim minimum distance band (MDB) thickness and area. Results: There were 272 normal subjects, including 175 whites, 40 blacks, 40 Asians, and 17 Hispanics. Rates of age-related decline were 2.3%, 2.0%, 1.7%, 3.3%, and 4.3% per decade for RNFL, RT, RV, MDB neuroretinal rim thickness, and MDB area, respectively. The RNFL was most affected by racial and ethnic variations, with Asians having thicker global, superior, and inferior RNFL, Hispanics having thicker inferior RNFL, and blacks having thinner temporal RNFL, compared to whites. For MDB thickness and area, Asians had smaller nasal values and blacks had smaller temporal values. Peripapillary RT and RV parameters were not influenced by race and ethnicity. Conclusions: All of the parameters exhibited age-related declines. RNFL, MDB thickness, and MDB area demonstrated racial and ethnic variations, while peripapillary RT and RV did not. Translational Relevance: This study demonstrates that both normal aging and ethnicity affect several novel 3D OCT parameters used to diagnose and monitor glaucoma (i.e., RT, RV, and MDB), and this should be factored in when making clinical decisions based on these parameters

    Effects of Age, Race, and Ethnicity on the Optic Nerve and Peripapillary Region Using Spectral-Domain OCT 3D Volume Scans

    Get PDF
    Purpose: To evaluate the effects of age, race, and ethnicity on the optic nerve and peripapillary retina using spectral-domain optical coherence tomography (SD-OCT) three-dimensional (3D) volume scans in normal subjects. Methods: This is a cross-sectional study performed at a single institution in Boston. All patients received retinal nerve fiber layer (RNFL) scans and an optic nerve 3D volume scan. The SD-OCT software calculated peripapillary RNFL thickness, retinal thickness (RT), and retinal volume (RV). Custom-designed software calculated neuroretinal rim minimum distance band (MDB) thickness and area. Results: There were 272 normal subjects, including 175 whites, 40 blacks, 40 Asians, and 17 Hispanics. Rates of age-related decline were 2.3%, 2.0%, 1.7%, 3.3%, and 4.3% per decade for RNFL, RT, RV, MDB neuroretinal rim thickness, and MDB area, respectively. The RNFL was most affected by racial and ethnic variations, with Asians having thicker global, superior, and inferior RNFL, Hispanics having thicker inferior RNFL, and blacks having thinner temporal RNFL, compared to whites. For MDB thickness and area, Asians had smaller nasal values and blacks had smaller temporal values. Peripapillary RT and RV parameters were not influenced by race and ethnicity. Conclusions: All of the parameters exhibited age-related declines. RNFL, MDB thickness, and MDB area demonstrated racial and ethnic variations, while peripapillary RT and RV did not. Translational Relevance: This study demonstrates that both normal aging and ethnicity affect several novel 3D OCT parameters used to diagnose and monitor glaucoma (i.e., RT, RV, and MDB), and this should be factored in when making clinical decisions based on these parameters

    Diagnostic Capability of Peripapillary Retinal Thickness in Glaucoma Using 3D Volume Scans

    No full text
    Purpose To determine the diagnostic capability of spectral-domain optical coherence tomography (SD OCT) peripapillary retinal thickness (RT) measurements from 3-dimensional (3D) volume scans for primary open-angle glaucoma (POAG). Design Cross-sectional study. Methods setting: Institutional. study population: 156 patients (89 POAG and 67 normal subjects). observation procedures: One eye of each subject was included. SD OCT peripapillary RT values from 3D volume scans were calculated for 4 quadrants of 3 different sized annuli. Peripapillary retinal nerve fiber layer (RNFL) thickness values were also determined. main outcome measures: Area under the receiver operating characteristic curve (AUROC) values, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Results The top 5 RT AUROCs for all glaucoma patients and for a subset of early glaucoma patients were for the inferior quadrant of outer circumpapillary annulus of circular grid (OCA) 1 (0.959, 0.939), inferior quadrant of OCA2 (0.945, 0.921), superior quadrant of OCA1 (0.890, 0.811), inferior quadrant of OCA3 (0.887, 0.854), and superior quadrant of OCA2 (0.879, 0.807). Smaller RT annuli OCA1 and OCA2 consistently showed better diagnostic performance than the larger RT annulus OCA3. For both RNFL and RT measurements, best AUROC values were found for inferior RT OCA1 and OCA2, followed by inferior and overall RNFL thickness. Conclusion Peripapillary RT measurements from 3D volume scans showed excellent diagnostic performance for detecting both glaucoma and early glaucoma patients. Peripapillary RT values have the same or better diagnostic capability compared to peripapillary RNFL thickness measurements, while also having fewer algorithm errors

    Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta

    No full text
    International audienc
    corecore