826 research outputs found

    Frequency-Domain Measurement of the Spin Imbalance Lifetime in Superconductors

    Get PDF
    We have measured the lifetime of spin imbalances in the quasiparticle population of a superconductor (τs\tau_s) in the frequency domain. A time-dependent spin imbalance is created by injecting spin-polarised electrons at finite excitation frequencies into a thin-film mesoscopic superconductor (Al) in an in-plane magnetic field (in the Pauli limit). The time-averaged value of the spin imbalance signal as a function of excitation frequency, fRFf_{RF} shows a cut-off at fRF1/(2πτs)f_{RF} \approx 1/(2\pi\tau_s). The spin imbalance lifetime is relatively constant in the accessible ranges of temperatures, with perhaps a slight increase with increasing magnetic field. Taking into account sample thickness effects, τs\tau_s is consistent with previous measurements and of the order of the electron-electron scattering time τee\tau_{ee}. Our data are qualitatively well-described by a theoretical model taking into account all quasiparticle tunnelling processes from a normal metal into a superconductor.Comment: Includes Supplementary Informatio

    Superconductor spintronics: Modeling spin and charge accumulation in out-of-equilibrium NS junctions subjected to Zeeman magnetic fields

    Get PDF
    We study the spin and charge accumulation in junctions between a superconductor and a ferromagnet or a normal metal in the presence of a Zeeman magnetic field, when the junction is taken out of equilibrium by applying a voltage bias. We write down the most general form for the spin and charge current in such junctions, taking into account all spin-resolved possible tunneling processes. We make use of these forms to calculate the spin accumulation in NS junctions subjected to a DC bias, and to an AC bias, sinusoidal or rectangular. We observe that in the limit of negligeable changes on the superconducting gap, the NS dynamical conductance is insensitive to spin imbalance. Therefore to probe the spin accumulation in the superconductor, one needs to separate the injection and detection point, i. e. the electrical spin detection must be non-local. We address also the effect of the spin accumulation induced in the normal leads by driving a spin current and its effects on the detection of the spin accumulation in the superconductor. Finally, we investigate the out-of-equilibrium spin susceptibility of the SC, and we show that it deviates drastically from it's equilibrium value

    Transport Properties of Carbon Nanotube C60_{60} Peapods

    Full text link
    We measure the conductance of carbon nanotube peapods from room temperature down to 250mK. Our devices show both metallic and semiconducting behavior at room temperature. At the lowest temperatures, we observe single electron effects. Our results suggest that the encapsulated C60_{60} molecules do not introduce substantial backscattering for electrons near the Fermi level. This is remarkable given that previous tunneling spectroscopy measurements show that encapsulated C60_{60} strongly modifies the electronic structure of a nanotube away from the Fermi level.Comment: 9 pages, 4 figures. This is one of two manuscripts replacing the one orginally submitted as arXiv:cond-mat/0606258. The other one is arXiv:0704.3641 [cond-mat

    RpfC (Rv1884) atomic structure shows high structural conservation within the resuscitation promoting factor catalytic domain

    Get PDF
    We report the first structure of the catalytic domain of RpfC (Rv1884), one of theresuscitation-promoting factors (RPFs) from Mycobacterium tuberculosis. The structure was solved using molecular replacement, once the space group had been correctly identified as twinned P21 rather than the apparent C2221 by searching for anomalous scattering sites in P1. The structure displays a very high degree of structural conservation with the structures of the catalytic domains of RpfB (Rv1009) and RpfE (Rv2450) already published. This structural conservation highlights the importance of the versatile domain composition of the RPF family

    Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire

    Get PDF
    Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of 'spintronics' or spin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted 'spin-orbit gap' in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio

    Quasiparticle spin resonance and coherence in superconducting aluminium

    Get PDF
    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott–Yafet spin–orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics

    Tunneling spectroscopy of few-monolayer NbSe2_2 in high magnetic field: Ising protection and triplet superconductivity

    Full text link
    In conventional Bardeen-Cooper-Scrieffer (BCS) superconductors, Cooper pairs of electrons of opposite spin (i.e. singlet structure) form the ground state. Equal spin triplet pairs (ESTPs), as in superfluid 3^3He, are of great interest for superconducting spintronics and topological superconductivity, yet remain elusive. Recently, odd-parity ESTPs were predicted to arise in (few-)monolayer superconducting NbSe2_2, from the non-colinearity between the out-of-plane Ising spin-orbit field (due to the lack of inversion symmetry in monolayer NbSe2_2) and an applied in-plane magnetic field. These ESTPs couple to the singlet order parameter at finite field. Using van der Waals tunnel junctions, we perform spectroscopy of superconducting NbSe2_2 flakes, of 2--25 monolayer thickness, measuring the quasiparticle density of states (DOS) as a function of applied in-plane magnetic field up to 33T. In flakes \lesssim 15 monolayers thick the DOS has a single superconducting gap. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by the Ising field. The superconducting energy gap, extracted from our tunnelling spectra, decreases as a function of the applied magnetic field. However, in bilayer NbSe2_2, close to the critical field (up to 30T, much larger than the Pauli limit), superconductivity appears to be more robust than expected from Ising protection alone. Our data can be explained by the above-mentioned ESTPs

    Clinical guidance on pharmacotherapy for the treatment of attention-deficit hyperactivity disorder (ADHD) for people with intellectual disability.

    Get PDF
    INTRODUCTION: ADHD causes significant distress and functional impairment in multiple domains of daily life. Therefore, diagnosis and treatment are important to improve the quality of life of people. The pharmacotherapy for ADHD is well established but needs systematic evaluation in Intellectual Disability (ID) populations. AREAS COVERED: This paper reviews the ADHD pharmacological treatment in people with ID using the PRISMA guidance for scoping reviews to help identify the nature and strength of evidence. EXPERT OPINION: In the last 20 years, seven randomized controlled trials have evaluated pharmacotherapies for ADHD in people with ID; five looking at methylphenidate. Generally, studies were underpowered; all but two had less than 25 participants. Of the two larger trials one was single blinded and therefore open to bias. Only two used a parallel-group method, the remainder were mostly short crossover trials; not ideal when measuring behavioral and psychological parameters which are long standing. The remaining evidence is made up of observational studies. Methylphenidate and atomoxetine, particularly at higher doses, have shown clear benefits in people with ID. Most people with ID tolerated ADHD medications well. Benefits were seen in behavioral and/or cognitive domains. The evidence base is limited, though promising, for dexamfetamine, clonidine, and guanfacine
    corecore