27 research outputs found

    DNA-interacting characteristics of the archaeal rudiviral protein SIRV2_Gp1

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Whereas the infection cycles of many bacterial and eukaryotic viruses have been characterized in detail, those of archaeal viruses remain largely unexplored. Recently, studies on a few model archaeal viruses such as SIRV2 (Sulfolobus islandicus rod-shaped virus) have revealed an unusual lysis mechanism that involves the formation of pyramidal egress structures on the host cell surface. To expand understanding of the infection cycle of SIRV2, we aimed to functionally characterize gp1, which is a SIRV2 gene with unknown function. The SIRV2_Gp1 protein is highly expressed during early stages of infection and it is the only protein that is encoded twice on the viral genome. It harbours a helix-turn-helix motif and was therefore hypothesized to bind DNA. The DNA-binding behavior of SIRV2_Gp1 was characterized with electrophoretic mobility shift assays and atomic force microscopy. We provide evidence that the protein interacts with DNA and that it forms large aggregates, thereby causing extreme condensation of the DNA. Furthermore, the N-terminal domain of the protein mediates toxicity to the viral host Sulfolobus. Our findings may lead to biotechnological applications, such as the development of a toxic peptide for the containment of pathogenic bacteria, and add to our understanding of the Rudiviral infection cycle.This research was supported by the Geconcerteerde Onderzoeks Actie grant ‘Phage Biosystems’ from the KULeuven (http://www.kuleuven.be/onderzoek/kernprojecten/goa.htm). T.E.F.Q. was supported by a FWO Pegasus Marie-Curie fellowship and a Marie-Curie Intra-European Fellowship. The Belgian Federal Science Policy Office (Belspo) and the European Space Agency (ESA) PRODEX program supported the work of RGW. E.P. was supported by start-up funds provided by the Vrije Universiteit Brussel (VUB)

    An Oscillating MinD Protein Determines the Cellular Positioning of the Motility Machinery in Archaea.

    Full text link
    MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins

    Architecture and modular assembly of Sulfolobus S-layers revealed by electron cryotomography

    Get PDF
    This is the final version. Available from the National Academy of Sciences of the United States of America via the DOI in this record. Surface protein layers (S-layers) often form the only structural component of the archaeal cell wall and are therefore important for cell survival. S-layers have a plethora of cellular functions including maintenance of cell shape, osmotic, and mechanical stability, the formation of a semipermeable protective barrier around the cell, and cell-cell interaction, as well as surface adhesion. Despite the central importance of S-layers for archaeal life, their 3-dimensional (3D) architecture is still poorly understood. Here we present detailed 3D electron cryomicroscopy maps of archaeal S-layers from 3 different Sulfolobus strains. We were able to pinpoint the positions and determine the structure of the 2 subunits SlaA and SlaB. We also present a model describing the assembly of the mature S-layer.ER

    Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids

    Get PDF
    This is the final version of the article. Available from National Academy of Sciences via the DOI in this record.Viruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.D.P. and T.E.F.Q. received financial support from L’Agence Nationale de la Recherche. W.K. and B.D. received financial support from the Max Planck Society

    Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments

    Get PDF
    Archaea have evolved to survive in some of the most extreme environments on earth. Life in extreme, nutrient-poor conditions gives the opportunity to probe fundamental energy limitations on movement and response to stimuli, two essential markers of living systems. Here we use three-dimensional holographic microscopy and computer simulations to reveal that halophilic archaea achieve chemotaxis with power requirements one hundred-fold lower than common eubacterial model systems. Their swimming direction is stabilised by their flagella (archaella), enhancing directional persistence in a manner similar to that displayed by eubacteria, albeit with a different motility apparatus. Our experiments and simulations reveal that the cells are capable of slow but deterministic chemotaxis up a chemical gradient, in a biased random walk at the thermodynamic limit
    corecore