42 research outputs found

    Role of reward and punishment in motor learning in health and after stroke

    Get PDF
    Is the carrot more effective than the stick? Through a combination of behavioural experiments, pharmacological manipulations and computational modelling, this thesis investigates the effects of reward and punishment feedback on adaptive motor learning, in both healthy subjects and stroke survivors. The role of error-based motor learning in neurorehabilitation is still unclear partly because, although it leads to fast and large changes in behaviour, these changes are often short-lived once the perturbation is removed. Nevertheless, recent evidence shows that motivational feedback can increase adaptation to a perturbation and retention of the motor memory in healthy subjects. In the first study presented in this thesis I show that these effects partially apply also to stroke survivors. In particular, reward or punishment-based feedback enhance error-correction during adaptation, and reward increases the retention of the new motor memory in stroke survivors. I then moved to investigate the role of dopamine in error-based motor learning under reward or punishment in healthy young subjects. Consistently with results in stroke patients, reward increased motor memory retention. In addition, I show here that this effect of reward on retention is mediated by dopaminergic pathways. Finally, I investigated if pharmacologic dopaminergic stimulation can potentiate the positive effect of reward on retention in dopamine-deficient subjects, such as older adults. Unfortunately, likely due to the dopaminergic deficit, reward had no effect on elderly participants, and this study failed to show a benefit of dopaminergic stimulation in the elderly. However, this evidence is not sufficient to rule out possible positive effects of pharmacologic dopaminergic stimulation on motor learning in brain injured patients, such as stroke survivors. Taken together, these results represent a step further toward the combined use of reward feedback, pharmacological stimulation and motor learning paradigms in clinical rehabilitation. Indeed, as shown by the qualitative survey presented at the beginning of this thesis, an evidence-based guide to the use of reward and punishment feedback during rehabilitation would be welcome by stroke professionals

    Reward and punishment enhance motor adaptation in stroke

    Get PDF
    Background and objective: The effects of motor learning, such as motor adaptation, in stroke rehabilitation are often transient, thus mandating approaches that enhance the amount of learning and retention. Previously, we showed in young individuals that reward and punishment feedback have dissociable effects on motor adaptation, with punishment improving adaptation and reward enhancing retention. If these findings were able to generalise to patients with stroke, they would provide a way to optimise motor learning in these patients. Therefore, we tested this in 45 patients with chronic stroke allocated in three groups. / Methods: Patients performed reaching movements with their paretic arm with a robotic manipulandum. After training (day 1), day 2 involved adaptation to a novel force field. During the adaptation phase, patients received performance-based feedback according to the group they were allocated: reward, punishment or no feedback (neutral). On day 3, patients readapted to the force field but all groups now received neutral feedback. / Results: All patients adapted, with reward and punishment groups displaying greater adaptation and readaptation than the neutral group, irrespective of demographic, cognitive or functional differences. Remarkably, the reward and punishment groups adapted to similar degree as healthy controls. Finally, the reward group showed greater retention. / Conclusions: This study provides, for the first time, evidence that reward and punishment can enhance motor adaptation in patients with stroke. Further research on reinforcement-based motor learning regimes is warranted to translate these promising results into clinical practice and improve motor rehabilitation outcomes in patients with stroke

    Prevalence and incidence of epilepsy associated with convulsive seizures in rural Bolivia. A global campaign against epilepsy project

    Get PDF
    we performed a three-stages door-to-door survey to estimate incidence and prevalence of epilepsy associated with convulsive seizures (EACS) in a rural area of Bolivia.the study was carried out in the Cordillera Province, southern-eastern Bolivia. One hundred fourteen rural communities with a total population of 18,907 inhabitants were included in the survey. In order to identify subjects with EACS, trained fieldworkers administered a validated single screening question to the householders (stage I). A second face-to-face questionnaire was administered to each positive subject (stage II) that, in case of positive answer, underwent a complete neurological examination to confirm the diagnosis (stage III). We estimated age and sex specific life-time and active EACS prevalence at the prevalence day (30th June 2010). Incidence risk was evaluated for the 10-year period between January 2000 and December 2010.on prevalence day we identified 136 subjects with EACS, 124 of whom had active epilepsy. The life-time prevalence of EACS was 7.2/1,000 (7.6/1,000 age-adjusted to the world standard population) while the prevalence of active EACS was 6.6/1,000 (6.7/1,000 age-adjusted to the world standard population). Both life-time and active prevalence showed a peak (10.3/1,000) in the 15-24 years age group and, overall, were higher among women. During the incidence study period, 105 patients living in the study area had the onset of EACS. The crude incidence risk was 55.4/100,000 (49.5/100,000 age-adjusted to the world standard population). Incidence was slightly but not significantly higher among women (58.9/100,000 versus 51.9/100,000).the present study demonstrated a considerable burden of EACS in the Bolivian Chaco, showing prevalence and incidence estimates close to those reported for low and middle- income countries and underlying the need of treatment programs

    Spectrum, risk factors and outcomes of neurological and psychiatric complications of COVID-19: a UK-wide cross-sectional surveillance study.

    Get PDF
    SARS-CoV-2 is associated with new-onset neurological and psychiatric conditions. Detailed clinical data, including factors associated with recovery, are lacking, hampering prediction modelling and targeted therapeutic interventions. In a UK-wide cross-sectional surveillance study of adult hospitalized patients during the first COVID-19 wave, with multi-professional input from general and sub-specialty neurologists, psychiatrists, stroke physicians, and intensivists, we captured detailed data on demographics, risk factors, pre-COVID-19 Rockwood frailty score, comorbidities, neurological presentation and outcome. A priori clinical case definitions were used, with cross-specialty independent adjudication for discrepant cases. Multivariable logistic regression was performed using demographic and clinical variables, to determine the factors associated with outcome. A total of 267 cases were included. Cerebrovascular events were most frequently reported (131, 49%), followed by other central disorders (95, 36%) including delirium (28, 11%), central inflammatory (25, 9%), psychiatric (25, 9%), and other encephalopathies (17, 7%), including a severe encephalopathy (n = 13) not meeting delirium criteria; and peripheral nerve disorders (41, 15%). Those with the severe encephalopathy, in comparison to delirium, were younger, had higher rates of admission to intensive care and a longer duration of ventilation. Compared to normative data during the equivalent time period prior to the pandemic, cases of stroke in association with COVID-19 were younger and had a greater number of conventional, modifiable cerebrovascular risk factors. Twenty-seven per cent of strokes occurred in patients 60 years old, the younger stroke patients presented with delayed onset from respiratory symptoms, higher rates of multi-vessel occlusion (31%) and systemic thrombotic events. Clinical outcomes varied between disease groups, with cerebrovascular disease conferring the worst prognosis, but this effect was less marked than the pre-morbid factors of older age and a higher pre-COVID-19 frailty score, and a high admission white cell count, which were independently associated with a poor outcome. In summary, this study describes the spectrum of neurological and psychiatric conditions associated with COVID-19. In addition, we identify a severe COVID-19 encephalopathy atypical for delirium, and a phenotype of COVID-19 associated stroke in younger adults with a tendency for multiple infarcts and systemic thromboses. These clinical data will be useful to inform mechanistic studies and stratification of patients in clinical trials

    Toxocariasis and epilepsy: systematic review and meta-analysis.

    Get PDF
    International audienceOBJECTIVE: Human toxocariasis is a zoonotic infection caused by the larval stages of Toxocara canis (T. canis) and less frequently Toxocara cati (T. cati). A relationship between toxocariasis and epilepsy has been hypothesized. We conducted a systematic review and a meta-analysis of available data to evaluate the strength of association between epilepsy and Toxocara spp. seropositivity and to propose some guidelines for future surveys. DATA SOURCES: Electronic databases, the database from the Institute of Neuroepidemiology and Tropical Neurology of the University of Limoges (http://www-ient.unilim.fr/) and the reference lists of all relevant papers and books were screened up to October 2011. METHODS: We performed a systematic review of literature on toxocariasis (the exposure) and epilepsy (the outcome). Two authors independently assessed eligibility and study quality and extracted data. A common odds ratio (OR) was estimated using a random-effects meta-analysis model of aggregated published data. RESULTS: Seven case-control studies met the inclusion criteria, for a total of 1867 participants (850 cases and 1017 controls). The percentage of seropositivity (presence of anti-Toxocara spp. antibodies) was higher among people with epilepsy (PWE) in all the included studies even if the association between epilepsy and Toxocara spp. seropositivity was statistically significant in only 4 studies, with crude ORs ranging 2.04-2.85. Another study bordered statistical significance, while in 2 of the included studies no significant association was found. A significant (p < 0.001) common OR of 1.92 [95% confidence interval (CI) 1.50-2.44] was estimated. Similar results were found when meta-analysis was restricted to the studies considering an exclusively juvenile population and to surveys using Western Blot as confirmatory or diagnostic serological assay. CONCLUSION: Our results support the existence of a positive association between Toxocara spp. seropositivity and epilepsy. Further studies, possibly including incident cases, should be performed to better investigate the relationship between toxocariasis and epilepsy

    Pharmacological Dopamine Manipulation Does Not Alter Reward-Based Improvements in Memory Retention during a Visuomotor Adaptation Task

    Get PDF
    Motor adaptation tasks investigate our ability to adjust motor behaviors to an ever-changing and unpredictable world. Previous work has shown that punishment-based feedback delivered during a visuomotor adaptation task enhances error-reduction, whereas reward increases memory retention. While the neural underpinnings of the influence of punishment on the adaptation phase remain unclear, reward has been hypothesized to increase retention through dopaminergic mechanisms. We directly tested this hypothesis through pharmacological manipulation of the dopaminergic system. A total of 96 young healthy human participants were tested in a placebo-controlled double-blind between-subjects design in which they adapted to a 40° visuomotor rotation under reward or punishment conditions. We confirmed previous evidence that reward enhances retention, but the dopamine (DA) precursor levodopa (LD) or the DA antagonist haloperidol failed to influence performance. We reason that such a negative result could be due to experimental limitations or it may suggest that the effect of reward on motor memory retention is not driven by dopaminergic processes. This provides further insight regarding the role of motivational feedback in optimizing motor learning, and the basis for further decomposing the effect of reward on the subprocesses known to underlie motor adaptation paradigms
    corecore