156 research outputs found

    Stability and weakly convergent approximations of queuing systems on a circle

    Get PDF
    We rst consider a nongreedy queueing system on a circle We present a new and very simple proof of the stability of this system un der the appropriate condition based on the average travel times between customers Next we show that the same nongreedy system with a restricted number of customers converges weakly to this system when the restricted number goes to innity Finally we consider a polling network with nitely many service stations in which the server has a greedy service strategy Under the appropriate condition we give a new simple proof of the stability of this syste

    On a long range particle system with unbounded flip rates

    Get PDF
    We consider an interacting particle system on f0; 1g Z with non-local, unbounded ip rates. Zeroes ip to one at a rate that depends on the number of ones to the right until we see a zero (the ip rate equals times one plus this number). The ip rate of the ones equals . We give motivation for models like this in general, and this one in particular. The system turns out not to be Feller, and we construct it using monotonicity. We show thatfor < the system has a unique non-trivial stationary distribution, which is ergodic, stationary, and has a density ofones of . For the limit is degenerate at f1g Z . Our main tool is an explicit formula for the density of ones at any given moment

    A probabilistic approach to Zhang's sandpile model

    Get PDF
    The current literature on sandpile models mainly deals with the abelian sandpile model (ASM) and its variants. We treat a less known - but equally interesting - model, namely Zhang's sandpile. This model differs in two aspects from the ASM. First, additions are not discrete, but random amounts with a uniform distribution on an interval [a,b][a,b]. Second, if a site topples - which happens if the amount at that site is larger than a threshold value EcE_c (which is a model parameter), then it divides its entire content in equal amounts among its neighbors. Zhang conjectured that in the infinite volume limit, this model tends to behave like the ASM in the sense that the stationary measure for the system in large volumes tends to be peaked narrowly around a finite set. This belief is supported by simulations, but so far not by analytical investigations. We study the stationary distribution of this model in one dimension, for several values of aa and bb. When there is only one site, exact computations are possible. Our main result concerns the limit as the number of sites tends to infinity, in the one-dimensional case. We find that the stationary distribution, in the case aEc/2a \geq E_c/2, indeed tends to that of the ASM (up to a scaling factor), in agreement with Zhang's conjecture. For the case a=0a=0, b=1b=1 we provide strong evidence that the stationary expectation tends to 1/2\sqrt{1/2}.Comment: 47 pages, 3 figure

    The benefits of steroids versus steroids plus antivirals for treatment of Bell’s palsy: a meta-analysis

    Get PDF
    Objective To determine whether steroids plus antivirals provide a better degree of facial muscle recovery in patients with Bell’s palsy than steroids alone

    On Higher Order Gravities, Their Analogy to GR, and Dimensional Dependent Version of Duff's Trace Anomaly Relation

    Full text link
    An almost brief, though lengthy, review introduction about the long history of higher order gravities and their applications, as employed in the literature, is provided. We review the analogous procedure between higher order gravities and GR, as described in our previous works, in order to highlight its important achievements. Amongst which are presentation of an easy classification of higher order Lagrangians and its employment as a \emph{criteria} in order to distinguish correct metric theories of gravity. For example, it does not permit the inclusion of only one of the second order Lagrangians in \emph{isolation}. But, it does allow the inclusion of the cosmological term. We also discuss on the compatibility of our procedure and the Mach idea. We derive a dimensional dependent version of Duff's trace anomaly relation, which in \emph{four}-dimension is the same as the usual Duff relation. The Lanczos Lagrangian satisfies this new constraint in \emph{any} dimension. The square of the Weyl tensor identically satisfies it independent of dimension, however, this Lagrangian satisfies the previous relation only in three and four dimensions.Comment: 30 pages, added reference

    Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content

    Get PDF
    Top–down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content

    Do Gravity-Related Sensory Information Enable the Enhancement of Cortical Proprioceptive Inputs When Planning a Step in Microgravity?

    No full text
    International audienceWe recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90–160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity

    13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    Get PDF
    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs
    corecore