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Abstract

We consider an interacting particle system on f0; 1gZwith non-local,

unbounded ip rates. Zeroes ip to one at a rate that depends on the

number of ones to the right until we see a zero (the ip rate equals �

times one plus this number). The ip rate of the ones equals �. We give

motivation for models like this in general, and this one in particular. The

system turns out not to be Feller, and we construct it using monotonicity.

We show that for � < � the system has a unique non-trivial stationary

distribution, which is ergodic, stationary, and has a density of ones of �
�
.

For � � � the limit is degenerate at f1gZ. Our main tool is an explicit

formula for the density of ones at any given moment.
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1 Introduction

Particle systems with local (and therefore bounded) rates have been studied

extensively over the last twenty years or so. Excellent entries to this �eld are

the two books of Liggett (1985, 2000). These particle systems are always Feller.

More recently, there has been a growing interest, especially in the physics liter-

ature, in systems with long range dependencies and non-local ip rates. Some

of these systems have attracted attention under the name self-organised crit-

icality (Bak (1996), Jensen (1998)). The physical literature emphasizes the

`critical' behaviour of such systems, that is, power law decay in time and space

of various quantities. In the pure mathematical sense, critical classical ther-

modynamic systems are not very well understood, and this makes it clear that

mathematicians have other priorities when it comes to long range interaction

particle systems.

The �rst obstacle for mathematicians is the very construction of such models

in in�nite volume. The classical construction techniques break down under

non-locality. In the cases where an explicit construction can in fact be carried

out, mathematicians are primarily interested in stationary distributions and

their properties. In the light of the remarks above, it is not surprising that

mathematicians try to get a feeling for this new class of models by looking

at concrete examples which are simple enough to allow rigorous analysis, but

which do have the required non-local ip rates.

In Maes et al. (2000) an in�nite volume one-dimensional sandpile model is

constructed. The resulting Markov process is not Feller and the only stationary

distribution is the trivial one in which the system is completely full. In the

current paper we introduce a new long range particle system which can be

constructed with similar ideas as in Maes et al. (2000) but which turns out to

have a unique non-trivial stationary distribution, various properties of which

can in fact be established.

Informally, our system can be described as follows. The state space is 
 =

f0; 1gZ. Let � > 0, � � 0. Typically, we denote a state of the system by � 2 
.

If �(x) equals one, it ips to zero at rate �. If �(x) equals zero, it ips to one at
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rate � times one plus the number of indices larger than x, until the �rst index

larger than x with a zero.

The `global' reason for studying this system is that is about the simplest

non-local particle system for which we can expect a nontrivial stationary dis-

tribution. More speci�cally, a number of interpretations is possible, and we

mention two such interpretations:

1. One can think of a toy model for a sandpile with dissipation. Grains of

sand fall down on each site i 2Zaccording to a Poisson process with intensity

�. All these Poisson processes are independent of each other. If a grain falls

down on some site i at a moment that site i is occupied by another grain, the

falling grain slides to the nearest site on the left (i.e. a site with a lower num-

ber) where no grain is present. We suppose that the grain arrives at that site

instantanously. Grains of sand dissapear independently of each other after an

exponentially distributed time with parameter �.

2. One can also interpret this system as a queueing system with impatient

customers, where each site i 2Zis associated to a Poisson arrival process with

intensity �. There is a server at each site. The arrival processes are independent

of each other. If there is an arrival of the Poisson process associated to some

site i, we assign a service place to this customer in the following way. If the

server at site x is not busy at the moment the customer arrives (i.e. there is no

customer present at site i), the customer takes the place at site i. If the server

at site i is busy, the customer is not allowed to take the place at site i. He must

go to the nearest server on his left who is not busy, and is served there. We

assume that customers arrive at their service place instantaneously and that

service times are independent and exponentially distributed with parameter �.

After a customer is served, he leaves the system.

Because of the �rst interpretation, we shall call the system a sandpile model

with dissipation (SMD). Because of the dissipation of sand, we do not expect

genuine SOC behaviour (whatever that may be).

As anticipated above, it is not immediately clear that the above description

gives rise to a well de�ned process in in�nite volume. In Section 2 we shall
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construct a Markov semigroup S(t), which is the semigroup of the SMD. The

construction uses the monotonicity of the process and is in the same spirit as

the constructions of the one-dimensional sandpile process in Maes et al. (2000)

and the long range exclusion processes in Liggett (1980). We shall also show

that the SMD is not a Feller process. In Section 3 we see that although the

system is not Feller, there is, for some `special' functions and con�gurations, a

relation between the Markov semigroup of the SMD and its formal generator.

This relation is used in Section 4 where we shall prove the following result. Here

�S(t) is the distribution of the SMD at time t if its initial con�guration has

distribution �.

Theorem 1.1 Let � > 0 and � � 0 be given and let � be a probability measure

on 
. Then for all � and �, the weak limit �1 = limt!1 �S(t) exists and is an

ergodic stationary measure on 
, with �1(�(0) = 1) = min
n
�
�
; 1
o
.

When we think of our interpretation of the system as a queueing system, we

see that the system has a non-trivial stationary distribution for exactly those

parameter values � and � for which a M(�)=M(�)=1 queueing system is stable.

At �rst sight this might be surprising, since there is no `waiting room' available

in the SMD. On the other hand, when � < � there is globally enough service

capacity and generally speaking, it seems reasonable that, if one allows interac-

tions between queues, the time of the servers can be used more e�ciently which

decreases the waiting time (in this case there is no waiting time).

In order to understand the proof of Theorem 1.1, it is not necessary to read

the appendix and all of Section 3. We shall indicate which part can be omitted.

2 Construction of the SMD

We start with some notation. Let 
 = f0; 1gZbe the state space of the SMD.

The space 
 is equipped with the product topology and the Borel �-algebra B.

Initial con�gurations will be denoted by �; � 2 
 and the (random) con�guration

of the system at time t if the initial con�guration was � or � will be denoted by

�t or �t respectively. We call a site i 2Zoccupied in � i� �(i) = 1, we interpret
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this as the presence of a particle at site i in the SMD. When we write � � �,

we mean that �(i) � �(i) for all i 2 Z. Let 
F be the set of all con�gurations

in f0; 1gZwhich have only �nitely many occupied sites. We de�ne l�(i) 2 N to

be the number of occupied sites in con�guration � to the right of site i until

the nearest site to the right of site i that is not occupied:

l�(i) := #fj 2Z: j > i and for all i < j0 � j: �(j0) = 1g:

De�ne the following ipping transformation Ti which changes the con�guration

at site i and leaves all other sites unchanged:

Ti(�)(x) :=

8<
: �(x) if x 6= i,

1� �(x) if x = i:

In this section we shall de�ne a Markov semigroup S(t) acting on bounded

measurable functions f , which will be the semigroup of the SMD: S(t)f(�) :=

E�(f(�t)). In Section 3, it will turn out that for some `special' functions f and

some `special' � 2 
, limt#0
S(t)f(�)�f(�)

t
exists and is equal to Gf(�), where G

is the formal generator:

Gf(�) :=
X
i

1f�(i)=0g�(1 + l�(i)) (f (Ti(�))� f(�))

+
X
i

1f�(i)=1g� (f (Ti(�))� f(�)) :

We shall now construct the SMD. The construction proceeds in �ve steps

and is very similar to the construction of the one-dimensional sandpile process

as carried out in Maes et al. (2000). We shall �rst outline the procedure briey

and work out the details in the appendix.

Step 1. We de�ne an interacting particle system with state space 
F in

the following way. Choose n 2 N. To each site i 2 Z\ [�n; n] we associate a

Poisson process with parameter � > 0; these processes are independent of each

other. Particles enter the system according to the following mechanism. If the

system is in state � 2 
F and a Poisson arrival occurs of the Poisson process

associated to site i 2 [�n; n] then:

� In case �(i) = 0, �(i) changes to 1, i.e. the particle is placed at site i.
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� In case �(i) = 1, then the particle is placed at the nearest site with a

number smaller than i which is not occupied.

Particles leave the system, independently of each other and of the arrival pro-

cesses, after a period which is exponentially distributed with parameter � � 0.

We call the Markov process described above the n-process (because of the re-

striction on the arrival processes). The associated semigroup is denoted by

Sn(t) and is de�ned for bounded measurable functions on 
F . The state of the

n-process at time t if its initial state was � 2 
F is denoted by �n;t.

Step 2. We show that the n-process (de�ned on 
F ) is monotone, i.e. we

show that for � � � there is a coupling (�̂n;t; �̂n;t)(t�0) of �n;t(t�0) and �n;t(t�0)

such that �̂n;t � �̂n;t for all t � 0.

Step 3. The monotonicity of the n-process on 
F makes it possible to extend

the n-process to a process with state space 
 in the following way. Let M be

the space of bounded Borel measurable increasing functions on 
. For f 2 M,

the semigroup of the extension of the n-process will be given by

Sn(t)f(�) := lim
�2
F ; �"�

Sn(t)f(�):

This is well de�ned, as we show in the appendix.

Step 4. We show that the semigroups Sn(t) are monotone in n.

Step 5. Since the semigroups Sn(t) are monotone in n we can de�ne a

`limiting' process with semigroup S(t), which is for f 2 M and � 2 
 de�ned

by

S(t)f(�) := lim
n"1

Sn(t)f(�)

Observe that it su�ces to de�ne S(t) only for f 2 M, since the distribution

of the `limiting' process at time t is completely determined by the outcomes of

S(t)f(�) for f 2 M.

Finally we de�ne the SMD to be the Markov process that corresponds to

the semigroup S(t).

The details which are left open in the above description can be found in the

appendix.
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The behaviour of the SMD is somewhat strange for con�gurations which

have a �nite number of unoccupied sites, as is the case in the one-dimensional

sandpile process in Maes et al. (2000). As a consequence we have:

Proposition 2.1 The Markov process associated to S(t) is not a Feller process.

Proof: Let C(
) be the space of all continuous functions on 
. If the process

were Feller, then for all f 2 C(
) and all � 2 
:

lim
t#0

S(t)f(�) = f(�): (1)

We shall show that this does not hold for some special choice of f and �. Let

�� be given by

��(x) :=

8<
: 0 if x = 0,

1 otherwise,

and let ��m for m 2 N be de�ned by

��m(x) :=

8<
: ��(x) if x 2 [�m;m]\Z;

0 otherwise.

De�ne f : 
! R by f(�) = �(0). We shall show that if limt#0 S(t)f(��) exists,

the limit cannot be smaller than �
�+� and since f(��) = 0, this implies that (1)

does not hold and that the process is not Feller. De�ne the random variable

��m;t to be the state of the n-process at time t, if the initial con�guration was

��m. Let Am;n be the event (in the n-process with initial con�guration �m)

that during the time interval [0; t] a customer takes place at site 0 and that

his service does not end before time t. Let Bm;n be the event (again in the

n-process with initial con�guration �m) that there is an arrival during [0; t] in

at least one of the Poisson processes associated to the sites in [1; n] before any

of the sites in [1; n] becomes unoccupied. Then for m � n:

Sn(t)f(�
�
m) = P (��mn;t

(0) = 1)

� P (Am;n)

� P (Bm;n)e
��t

=
�n

�n+ �n
(1� e�n(�+�)t)e��t:
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So if limt#0 S(t)f(�
�) exists, then

lim
t#0

S(t)f(��) = lim
t#0

lim
n!1

lim
m!1

Sn(t)f(�
�
m)

� lim
t#0

lim
n!1

lim
m!1

�n

�n+ �n
(1� e�n(�+�)t)e��t

=
�

�+ �
:

This proves Proposition 2.1. �

3 The relation between S(t) and G

We saw in the previous section that the Markov process associated to S(t) is

not Feller. However, as in the one-dimensional sandpile model in Maes et al.

(2000), we have that for some class of `nice' functions and con�gurations:

lim
t#0

S(t)f(�)� f(�)

t

exists, and is equal to Gf(�). To achieve this, we need the concepts of N -local

functions and decent con�gurations as introduced in Maes et al. (2000). We

repeat the de�nitions here. Let 
1 be the set of con�gurations with an in�nite

number of unoccupied sites at either side of the origin,


1 := f� 2 
 :
X
i<0

(1� �(i)) =
X
i>0

(1� �(i)) =1g:

We write the ordered indices i with �(i) = 0 as (: : : ; X�1(�); X0(�); X1(�); : : :),

where X0(�) := minfi � 0 : �(i) = 0g. Let (for � 2 
1)

In(�) = (Xn�1(�); Xn(�)]\Z;

be a partition of Zinto �nite sets. We write

KN(�) :=
N[

j=�N

Ij(�);

and j � j for cardinality.

A function f : 
 ! R is called N -local if for all �, � in 
1 with KN(�) =

KN(�) and �(i) = �(i) for all i 2 KN(�) = KN(�), we have f(�) = f(�). We
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shall also use this notion for functions which are only de�ned on a subset of 


which contains 
1. A con�guration � is called decent if � 2 
1 and

a(�) := lim sup
n!1

jI�n(�)j+ � � �+ jIn(�)j

2n+ 1
<1:

If � has a positive density �(�) of zeroes, then a(�) = 1
�(�) , and hence � is

decent. The set of decent con�gurations is called 
dec.

Theorem 3.1 Let f 2 M be N -local for some N 2 N and let � 2 
dec. Then

Gf(�) is well de�ned and for t < 1
4(�+�)ea(�),

S(t)f(�) =
1X
n=0

tnGnf(�)

n!

and therefore,

lim
t#0

S(t)f(�)� f(�)

t

exists and is equal to Gf(�).

Since the details of the proof are di�erent from the proof of the corresponding

result in Maes et al. (2000), we shall include the proof of Theorem 3.1, but it

is possible to skip this part and continue reading at Section 4.

Lemma 3.2 Let f : D � 
 ! R be N -local, with 
1 � D. Then Gf is

(N + 1)-local.

Proof: We show �rst that if f is N -local, Gf(�) is �nite on a subset of 
 which

contains 
1. Remember that Gf(�) was de�ned by

Gf(�) :=
X
i

1f�(i)=0g�(1 + l�(i)) (f (Ti(�))� f(�))

+
X
i

1f�(i)=1g� (f (Ti(�))� f(�)) :

Let � 2 
1 and let f beN -local. It follows that for i 2ZnfX�(N+1)(�); : : : ; XN(�)g,

f(Ti(�))� f(�) = 0. This implies that the above sum converges.

Let us assume now that f is N -local and show that it follows that Gf is

(N+1)-local. Assume that �; � 2 
1 with KN+1(�) = KN+1(�) and �(i) = �(i)

for all i 2 KN+1(�) = KN+1(�). We saw already that the sums in Gf(�) and
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Gf(�) run over i 2 fX�(N+1)(�); : : : ; XN(�)g. Observe that it follows from

our assumptions that f(�) = f(�) and that for i 2 fX�(N+1)(�); : : : ; XN(�)g,

1f�(i)=1g = 1f�(i)=1g, f(Ti(�)) = f(Ti(�)) and li(�) = li(�). So Gf(�) = Gf(�)

and we conclude that Gf is (N + 1)-local. �

Lemma 3.3 Let f : 
! R be N -local and bounded and let � 2 
1. Then

jGnf(�)j � (2(�+ �))njjf jj1(jI�(N+n)(�)j+ � � �+ jIN+n(�)j)
n: (2)

Proof: We use induction on n. Suppose f : 
 ! R is N -local and bounded

and � 2 
1. For n = 1 we saw in the proof of Lemma 3.2 that only the terms

where i 2 fX�(N+1)(�); : : : ; XN(�)g contribute to the sum, so

jGf(�)j �
X

i2fX�(N+1)(�);:::;XN(�)g

1f�(i)=0g�(1 + l�(i))j(f(Ti(�)� f(�))j

+
X

i2fX�(N+1)(�);:::;XN(�)g

1f�(i)=1g�j (f (Ti(�))� f(�)) j

� 2jjf jj1�(jI�N(�)j+ � � �+ jIN+1(�)j)

+2jjf jj1� (jI�N (�)j+ � � �+ jIN (�)j)

� 2(�+ �)jjf jj1
�
jI�(N+1)(�)j+ � � �+ jIN+1(�)j

�
:

So for n = 1, statement (2) in Lemma 3.3 is true. Assume that we know that

(2) holds for all n � k (induction hypothesis) and consider

jGk+1f(�)j =

�����
X
i

1f�(i)=0g�(1 + l�(i))
�
Gkf (Ti(�))� Gkf(�)

�

+
X
i

1f�(i)=1g�
�
Gkf (Ti(�))�Gkf(�)

������ :
If f is N -local, then Gkf is (N + k)-local (this follows from Lemma 3.2), so for

i 2 Zn fX�(N+k+1)(�); : : : ; XN+k(�)g we have that G
kf (Ti(�))� Gkf(�) = 0.

From this and the induction hypothesis we conclude that

jGk+1f(�)j � X
i2fX�(N+k+1)(�);:::;XN+k(�)g

(1 + l�(i))�1f�(i)=0g

����Gkf(�)
���+ ���Gkf(Ti(�))

����+
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X
i2fX�(N+k+1)(�);:::;XN+k(�)g

�1f�(i)=1g

����Gkf(�)
���+ ���Gkf(Ti(�))

����

� [(2(�+ �))kjjf jj1(jI�(N+k)(�)j+ � � �+ jIN+k(�)j)
k +

(2(�+ �))kjjf jj1(jI�(N+k+1)(�)j+ � � �+ jIN+k+1(�)j)
k]�

[�
�
jI�(N+k)(�)j+ � � �+ jIN+k+1j

�
+

�
�
jI�(N+k)(�)j+ � � �+ jIN+kj

�
]

� (2(�+ �))k+1jjf jj1(jI�(N+k+1)(�)j+ � � �+ jIN+k+1(�)j)
k+1:

This proves Lemma 3.3. Observe that the statement of the lemma also holds

for � 2 
F and G replaced by Gm, the generator of the m-process on 
F . �

Finally we need the following lemma from Maes et al. (2000):

Lemma 3.4 Let fan : n � 0g be a sequence of positive real numbers such

that lim supn!1 an=n = a < 1. Then the series
P1

n=0 t
nann=n! converges for

jtj < 1
ae
.

Proof of Theorem 3.1: Let f 2 M be N -local. For � 2 
F , f 2 M we have

that for all t,

Sn(t)f(�) =
1X
i=0

tiGi
nf(�)

i!
:

So by de�nition we get that for � 2 
,

S(t)f(�) = lim
n!1

lim
�02
F ;�0"�

1X
i=0

tiGi
nf(�

0)

i!
:

Suppose now that � 2 
dec. We have from the remark at the end of the proof

of Lemma 3.3 that when �0 2 
F , �0 � �,

jGi
nf(�

0)j � (2(�+ �))ijjf jj1(jI�(N+i)(�
0)j+ � � �+ jIN+i(�

0)j)i

� (2(�+ �))ijjf jj1(jI�(N+i)(�)j+ � � �+ jIN+i(�)j)
i:

From Lemma 3.4 it follows that for decent con�gurations � we have, for t <

1
4(�+�)ea(�) ,

1X
i=0

ti(2(�+ �))ijjf jj1(jI�(N+i)(�)j+ � � �+ jIN+i(�)j)i

i!
<1;
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so using dominated convergence we obtain that for t < 1
4(�+�)ea(�)

,

S(t)f(�) = lim
n!1

1X
i=1

tiGi
nf(�)

i!
:

We can deal with the limit for n ! 1 in the same way, which leads to the

desired result. �

4 The stationary distribution of the SMD

In this section we shall prove Theorem 1.1. The strategy will roughly be as

follows:

Proposition 4.1 states that if the initial con�guration of the SMD is chosen

according to some stationary measure, then the distribution of the con�guration

at time t is also a stationary measure. Observe that there is really something

to prove here, since the construction of the process is not stationary. Then

we prove Proposition 4.2 which states that if the initial con�guration is chosen

according to an ergodic stationary measure, then also the distribution of the

con�guration at time t is an ergodic stationary measure. We shall need these

results when we show that the stationary distribution of the SMD is an ergodic

stationary measure.

Lemma 4.3 and Lemma 4.4 say that if the initial con�guration of the system

is chosen according to an ergodic stationary measure with a strictly positive

density of empty sites, then there is a strictly positive density of sites that have

not been occupied during a small time period. We need this result for the rather

technical Lemmas 4.5 and 4.7. These lemmas are used in the proof of Lemma

4.8 and Proposition 4.9 to get a di�erential equation for the density of occupied

sites, which makes it possible to compute the density of occupied sites at time

t explicitly, if the starting con�guration was chosen according to an ergodic

stationary measure with a stricly positive density of empty sites. This is a key

ingredient in the proof of Theorem 1.1.

Proposition 4.1 If � is a stationary measure on 
 then �S(t) is a stationary

measure on 
.
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Proof: Let � be a stationary measure on 
 and let the left-shift T : 
! 
 be

given by T�(x) = �(x+ 1) for all x 2Z. It su�ces to show that

�S(t)(A) = �S(t)(T�1A); (3)

for cylinder events A. We �rst observe that for all � 2 
,

S(t)1A(�) = S(t)1T�1A(T
�1�); (4)

since if A depends only on coordinates in [�n; n] and if (�m)
1
m=1 is an increas-

ing sequence in 
F and �m " � then Sn(t)1A(�m) = Sn+1(t)1T�1A(T
�1�m).

Sending �rst m!1 and then n!1 leads to (4).

From this (3) follows easily, since

�S(t)(A) =

Z


S(t)1A(�) d�(�) =

Z


S(t)1T�1A(T

�1�) d�(�)

=

Z


S(t)1T�1A(�) d�(T�) =

Z


S(t)1T�1A(�) d�(�)

= �S(t)(T�1A):

�

Proposition 4.2 If � is an ergodic stationary measure on 
, then �S(t) is an

ergodic stationary measure on 
.

Proof: Let Xi(t), i 2 Zbe independent Poisson processes with parameter �

and let Di(t), i 2 Zbe independent Poisson processes with parameter �. Let,

for � 2 
F , �̂n;t be the state of the n-process at time t if the initial con�guration

is �, the arrivals take place according to the Poisson processes Xi(t) and the

departures according to the processes Di(t).

De�ne for � 2 
, �̂n;t by

�̂n;t(i) := lim
�2
F ;���

�̂n;t;

and de�ne �̂t by

�̂t(i) := lim
n!1

�̂n;t(i):

Then �̂t and �t are identically distributed.
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Now �̂t is a function of the initial con�guration and the arrival and departure

processes, which commutes with the shift. So for � ergodic, we conclude that

�S(t) is a factor of an ergodic stationary measure, and is therefore an ergodic

stationary measure itself. �

The next lemma gives a condition which ensures emptyness of a site in the

n-process during a period of length t. We need this for the proof of Lemma 4.4,

which says that if we start with a positive density of unoccupied sites, for some

amount of time, this density remains positive.

Lemma 4.3 Let � 2 
 and let Xk(t), k 2 Zbe a sequence of independent

Poisson arrival processes with parameter �. Let �̂n;t be de�ned as in the proof

of Lemma 4.2. Then

�(i) = 0; Xi(t) = 0

and

(j � i)�

jX
k=i+1

(Xk(t) + �(k)) � 0;

for all j 2 [i + 1; n] \Ztogether imply that �̂n;s(i) = 0; for all s � t. (Here

[i+ 1; n] := ;, for i � n).

Strictly speaking, we can use a weaker condition for the sites with a number

larger than n or smaller than �n, but the stated lemma su�ces for our purposes.

Proof of Lemma 4.3: It su�ces to prove the theorem for the case � = 0,

since the state of the n-process with � = 0 cannot be larger than the state of

the n-process where � > 0, if we use the same sequence of arrival processes

in both cases. Furthermore, we shall only consider the case i = 0, the general

statement can be proved analogously.

So assume that � = 0 and that �(0) = 0; X0(t) = 0, and

j �

jX
k=1

(Xk(t) + �(k)) � 0

for all j 2 [1; n] \Z. These conditions ensure that until time t, none of the

particles that arrived in the arrival processes associated to sites 1; : : : ; n had
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to go to site 0 to be served there. Together with the conditions �(0) = 0 and

X0(t) = 0 it follows that for all s � t, �̂n;s(0) = 0. This can be made precise by

an elementary induction argument on n. �

Lemma 4.4 Let �0 be an ergodic stationary measure on 
. Suppose that

�0(�(0) = 0) = 0;

for some 0 > 0. Then for t < 0
2�,

�0S(t)(�(0) = 0) > 0:

Proof: As in the proof of Lemma 4.3, it is enough to consider the case where

� = 0. Let �̂t and Xi(t), i 2Z, be de�ned as in the proof of Lemma 4.2.

Assume now that � has distribution �0. We call i a special empty point at

time t (s.e.p. for short) if

�(i) +Xi(t) = 0

and

(j � i)�

jX
k=i+1

(Xk(t) + �(k)) � 0

for all j � (i + 1). This name is chosen because when i is a s.e.p, it follows

from Lemma 4.3 that �̂n;t0(i) = 0 for all n and for all t0 < t, which implies that

�̂t0 = 0 for all t0 < t.

We shall prove that for t < 
2� there is a strictly positive density of special

empty points almost surely. By ergodicity of the stationary sequence Xi(t)+�(i)

we have that

lim
n!1

1

n

n�1X
i=0

1fi is s.e.p.g = P (0 is s.e.p.);

almost surely. De�ne for l 2 N,

Sl(t) :=
lX

i=0

(1�Xi(t)� �(i)):

Observe that P (0 is s.e.p.) = P (Sn(t) > 0; 8n � 0). Since for t < 0
2� ,

E(1�Xi(t)� �(i)) �
0
2
> 0;

we know that P (Sn = 0 i.o.) = 0 which implies that P (Sn(t) > 0; 8n � 0) > 0,

so P (0 is s.e.p.) > 0. This implies that �0S(t)(�(0) = 0) > 0, for all t < 
2� . �
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Lemma 4.5 Let � be an ergodic stationary measure on 
, with

�(�(0) = 0) > 0;

�-a.s. Then Z


1f�(0)=0g(�)(1+ l�(0))d�(�) = 1:

Proof: This follows from Theorem 4.6 (p. 46) of Peterson (1983). �

We will now prove a relation as in Theorem 3.1, for a special function which is

neither bounded nor monotone. We need this in the proofs of Lemma 4.7 and

Lemma 4.8. We use the following subset of 
dec,




dec
:=

(
� : lim

n!1

1

2n+ 1

nX
i=�n

(1� �(i)) = 

)
:

Lemma 4.6 Let  > 0 and let g be de�ned by g(�) := 1f�(0)=0g(�)(1 + l�(0)).

Then for � 2 


dec
and t < 

4(�+�)e ,

S(t)g(�) =
1X
i=0

tiGig(�)

i!

Proof: Let � 2 

dec and t < 

4(�+�)e . De�ne h by

h(�) := 1 + l�(0):

We will show that

S(t)h(�) =
1X
i=0

tiGih(�)

i!
<1; (5)

and that

S(t)(1f�(0)=1g(�)h(�)) =
1X
i=0

tiGi(1f�(0)=1g(�)h(�))

i!
<1: (6)

This su�ces, since if (5) and (6) hold, we have that

S(t)g(�) = S(t)(h(�)� 1f�(0)=1g(�)h(�))

=
1X
i=0

tiGih(�)

i!
�

1X
i=0

tiGi
n(1f�(0)=1g(�)h(�))

i!

=
1X
i=0

tiGi(h(�)� 1f�(0)=1g(�)h(�))

i!

=
1X
i=0

tiGi
ng(�)

i!
:
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We will now prove (5). The proof of (6) proceeds analogously and is omitted.

Let Gn be the generator of the n-process and de�ne hM (M 2 N) by

hM (�) := minfh(�);Mg:

Observe that

S(t)h(�) = lim
M!1

S(t)hM(�):

Since hM 2 M, we �nd that

S(t)h(�) = lim
M!1

lim
n!1

lim
�02
F ;�0"�

Sn(t)hM (�0)

= lim
M!1

lim
n!1

lim
�02
F ;�0"�

1X
i=0

tiGi
nhM(�0)

i!

= lim
n!1

lim
�02
F ;�0"�

lim
M!1

1X
i=0

tiGi
nhM(�0)

i!
;

where the third equality holds since all limits are increasing. We can now apply

the dominated convergence theorem three times, to bring the limits into the

sum. For the limit M !1, observe that for �0 2 
F and all M ,

jGi
nhM (�0)j � (2(�+ �))i(jI�i(�

0)j+ � � �+ jIi(�
0)j)i+1;

(this can be proved in the same way as Lemma 3.3) and that for �0 2 
F ,

1X
i=0

ti(2(�+ �))i(jI�i(�0)j+ � � �+ jIi(�0)j)i+1

i!
<1;

which follows from Lemma 3.4. For the second limit, we use that for all �0 2 
F

with �0 � �,

jGi
nh(�

0)j � (2(�+ �))i(jI�i(�)j+ � � �+ jIi(�)j)
i+1;

and that
1X
i=0

ti(2(�+ �))i(jI�i(�)j+ � � �+ jIi(�)j)i+1

i!
<1:

For the last limit we observe that the bound for jGi
nh(�

0)j is also valid for

jGi
nh(�)j, so that we are done. �
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Lemma 4.7 Let � be an ergodic stationary measure on 
, with �(�(0) = 0) =

 > 0: Then for t < 

5(�+�)e ;

d

dt

Z

dec

1X
n=0

tnGn1f�(0)=1g(�)

n!
d�(�) =

Z

dec

d

dt

1X
n=0

tnGn1f�(0)=1g(�)

n!
d�(�):

Proof: We shall denote the semigroup of the SMD with parameters � and

� by S�;�(t). Observe that �(


dec
) = 1. We shall show that there exists a

�-integrable function g such that for t 2
h
0; 

5(�+�)e
�
and � 2 


dec:����� ddt
1X
n=0

tnGn1f�(0)=1g(�)

n!

����� � g(�);

which su�ces.

Recall from Theorem 3.1 that
P1

n=0
tnGn

1f�(0)=1g(�)

n! converges for � 2 


dec

and t < 

4(�+�)e : So for t < 

5(�+�)e and � 2 


dec
we get (using Lemma 4.6),

that����� ddt
1X
n=0

tnGn1f�(0)=1g(�)

n!

�����
=

�����
1X
n=1

ntn�1Gn1f�(0)=1g(�)

n!

�����
=

�����
1X
n=0

tnGn(G1f�(0)=1g(�))

n!

�����
=

�����
1X
n=0

tnGn(1f�(0)=0g(�)�(1+ l�(0))� �1f�(0)=1g(�))

n!

����� (7)

� S�;�(t)1f�(0)=0g(�)�(1+ l�(0)) + �S�;�(t)1f�(0)=1g(�)

� S�;�(t)1f�(0)=0g(�)�(1+ l�(0)) + � � S�;0(t)1f�(0)=0g(�)�(1+ l�(0)) + �

� S�;0

�


5(�+ �)e

�
1f�(0)=0g�(1 + l�(0)) + �

This is a � integrable function, sinceZ

dec

S�;0

�


5(�+ �)e

�
1f�(0)=0g(�)�(1+ l�(0))d� =Z


dec

1f�(0)=0g(�)�(1+ l�(0))d�S�;0

�


5(�+ �)e

�
;

which is �nite by Lemma 4.5 since �S�;0

�


5(�+�)e

�
is an ergodic stationary

measure with

�S�;0

�


5(�+ �)e

�
(�(0) = 0) > 0;
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by Proposition 4.2 and Lemma 4.4. �

Lemma 4.8 Let � > 0; � > 0 and let � be an ergodic stationary measure on 


with

�(�(0) = 0) =  > 0:

Let t := �S(t)(�(0) = 0). Then for t � 

6(�+�)e,

t = (1�
�

�
)� (1�

�

�
� )e��t:

Proof: We use that

t = 1�

Z


1f�(0)=1g(�)d�S(t)

= 1�

Z


S(t)1f�(0)=1g(�)d�

and derive a di�erential equation for
R

 S(t)1f�(0)=1g(�)d�. Let t � 

6(�+�)e .

Since � concentrates on 


dec
, we may write

d

dt

Z


S(t)1f�(0)=1g(�)d� =

d

dt

Z


dec

1X
n=0

tnGn1f�(0)=1g(�)

n!
d�

=

Z


dec

1f�(0)=0g(�)�(1+ l�(0))d�S(t)

��

Z


dec

S(t)1f�(0)=1g(�)d�

= �� �

Z


S(t)1f�(0)=1g(�)d�:

Here we used Theorem 3.1, Lemma 4.5, Lemma 4.6, Lemma 4.7 and (7). We

conclude that Z


S(t)1f�(0)=1g(�)d� = ce��t +

�

�
;

for some c 2 R. Since Z


S(0)1f�(0)=1g(�)d� = 1� ;

we get that

t = 1�
�

�
� (1�  �

�

�
)e��t

and Lemma 4.8 is proved. �
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Proposition 4.9 Let � be an ergodic stationary measure on 
 with

�(�(0) = 0) =  > 0:

Then for � > 0; � > 0 and all t � 0 we have,

�S(t)(�(0) = 0) = max

�
(1�

�

�
)� (1�

�

�
� )e��t; 0

�
:

For � > 0; � = 0 and all t � 0,

�S(t)(�(0) = 0) = max f � �t; 0g :

Proof: Let � > 0, � > 0 be given and let � be as in the proposition, t as above.

Write t� = 
6(�+�)e . We already know from Lemma 4.8 that the statement of the

proposition is true for t � t�, and that �S(t�) is an ergodic stationary measure

with

�S(t�)(�(0) = 0) = t� > 0:

This means that the di�erential equation which we derived in the proof of

Lemma 4.8 also holds for t 2
h
t�; t� + t�

6(�+�)e

i
, and that the expression for t

in Lemma 4.8 is also true for t 2
h
t�; t� + t�

6(�+�)e

i
. Applying the same trick

again and again leads to the conclusion that

t = (1�
�

�
)� (1�

�

�
� )e��t;

for all t for which this expression is positive. When � � �, this is the case for

all t and we are done. When � > � we have in this way that for

t <
log( � 1 + �

�
)� log(�

�
� 1)

�
:= T (�);

t = (1�
�

�
)� (1�

�

�
� )e��t:

We claim that t = 0 for all t � T (�). To achieve this, we use the monotonicity

of the process in the parameter � (which can easily be proved using the basic

coupling for the n-processes on 
F and taking limits). If we consider t as a

function of �, we have that for � � �
0
, t(�) � t(�

0
). For � > 0; we claim

that it is impossible that t = � for some t � T (�), since there exists a unique
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�
00
< � such that the process with parameters �

00
and � has t(�

00
) = �

2 . So we

have that

�S(t) (�(0) = 0) = max

�
(1�

�

�
)� (1�

�

�
� )e��t; 0

�
:

The proof for the case � > 0; � = 0 proceeds analogously. �

Proof of Theorem 1.1: It follows immediately from Proposition 4.9 that the

theorem is true when � = 0, hence we suppose that � > 0. Let �0 be the con�g-

uration in which all sites are unoccupied and �1 be the con�guration in which

all sites are occupied. Let the measures �0 and �1 be de�ned by �0(f�0g) = 1

and �1(f�1g) = 1. The proof is based on the following observations:

Observation 1:

By monotonicity of the process, for f 2 M and � arbitrary, S(t)f(�1) �

S(t)f(�) � S(t)f(�0), so for all � we have, �0S(t) � �S(t) � �1S(t).

Observation 2:

The limits limn!1 �0S(t) and limn!1 �1S(t) exist and are stationary measures.

We get existence by the fact that �0S(t) is increasing in t and �1S(t) is decreas-

ing in t. We see this as follows: Since �0� � �0 for all �, we get that for f 2 M:

S(t+ �)f(�0) = S(t)S(�)f(�0) � S(t)f(�0):

So �0S(t) � �0S(t+ �). Similarly, since for all � �1� � �1,

S(t+ �)f(�1) = S(t)S(�)f(�1) � S(t)f(�1);

�1S(t) � �1S(t+ �). We conclude that limn!1 �0S(t) and limn!1 �1S(t) exist

and denote the limiting measures by �0 and �1 respectively. Since by Proposition

4.1, �0S(t) and �1S(t) are stationary measures for all t, �0 and �1 are also

stationary measures.

Observation 3: We claim that

�1(�(0) = 1) = �0(�(0) = 1) = min

�
�

�
; 1

�
:

To see this, use Proposition 4.9, to obtain

�0(�(0) = 1) = lim
t!1

�0S(t)(�(0) = 1) = min

�
�

�
; 1

�
:
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For �1, things are a bit more subtle.

�1(�(x) = 1) = lim
t!1

S(t)1f�(x)=1g(�1); (8)

but since �1 does not satisfy the assumptions of Proposition 4.9 we cannot use

this proposition directly as was the case for �0. Let �p be the Bernoulli measure

on 
, with �p(�(x) = 1) = p, and let �m be de�ned by �m(x) = 1 if x 2 [�m;m]

and �m = 0 otherwise. We claim that

lim
p"1

Z


S(t)1f�(0)=1g(�)d�p = S(t)1f�(0)=1g(�1): (9)

To prove (9), observe that

lim
p"1

Z


S(t)1f�(0)=1g(�)d�p � S(t)1f�(0)=1g(�1);

so it remains to prove that

lim
p"1

Z
S(t)1f�(0)=1g(�)d�p � S(t)1f�(0)=1g(�1):

By de�nition and by monotonicity,

S(t)1f�(0)=1g(�1) = lim
n!1

lim
m!1

Sn(t)1f�(0)=1g(�m)

= lim
m!1

lim
n!1

Sn(t)1f�(0)=1g(�m)

= lim
m!1

S(t)1f�(0)=1g(�m)

Now let � > 0 and let p(�;m) := (1� �)
1

2m+1 . Then

�p(�;m)(�(�m) = 1; : : : ; �(m) = 1) = 1� �

and Z


S(t)1f�(0)=1g(�)d�p(�;m) � (1� �)S(t)1f�(0)=1g(�m);

so we get that for all m,

lim
p"1

Z
S(t)1f�(0)=1g(�)d�p = lim

�#0

Z


S(t)1f�(0)=1g(�)d�p(�;m)

� S(t)1f�(0)=1g(�m):

Sending m!1 leads to

lim
p"1

Z
S(t)1f�(0)=1g(�)d�p � S(t)1f�(0)=1g(�1)
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and (9) is proved. Putting (8), (9) and Proposition 4.9 together yields that

�1(�(0) = 1) = lim
t!1

lim
p"1

Z


S(t)1f�(0)=1g(�)d�p

= lim
t!1

lim
p"1

min

�
(1� (1� p)�

�

�
)e��t +

�

�
; 1

�

= lim
t!1

min

�
(1�

�

�
)e��t +

�

�
; 1

�

= min

�
�

�
; 1

�

Conclusion: From Observation 1 and Observation 2 we conclude that �0 =

limt!1 �0S(t) � limt!1 �1S(t) = �1, with �0 and �1 stationary measures. If

we combine this with Observation 3 and Corollary 2.8 (page 75) of Liggett

(1985), we get that �0 = �1. So the process has an unique invariant measure

limt!1 �S(t), which equals �0 and �1, and which is stationary.

Finally we show that �1 is ergodic. Observe that we cannot use method of

Proposition 4.2, since we cannot write the state of the system in the stationary

distribution as a function of the initial state and the arrival and departure

processes. We use the monotonicity of the process and the fact that �0S(t) and

�1S(t) are ergodic stationary measures for all t.

Recall that T is the left shift on 
. To prove ergodicity of �1, it su�ces to

show that for all A;B 2 B for which 1A; 1B 2 M

lim
n!1

1

n

n�1X
k=0

�1(T
kA \ B) = �1(A)�1(B): (10)

In the proof of (10) we use the same technique as Liggett (1985) for spin systems.

Let A;B be as indicated above. Observe that it follows from Observation 1 that

�1(T
kA \ B) =

Z


1T kA\B(�)d�1 �

Z


1T kA\B(�)d�1S(t) (11)

and that

�1(T
kA \B) �

Z


1T kA\B(�)d�0S(t): (12)

From (11) and (12) we conclude that

lim
n!1

1

n

n�1X
k=0

Z


1T kA\B(�)d�0S(t) � lim

n!1

1

n

n�1X
k=0

�1(T
kA \B)

� lim
n!1

1

n

n�1X
k=0

Z


1T kA\B(�)d�1S(t):
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Since �0S(t) and �1S(t) are ergodic stationary measures, we get that

Z


1A(�)d�0S(t)

Z


1B(�)d�0S(t) � lim

n!1

1

n

n�1X
k=0

�1(T
kA \B)

�

Z


1A(�)d�1S(t)

Z


1B(�)d�1S(t):

Taking limits for t!1 leads to (10), so �1 is an ergodic stationary measure.

It follows from Observation 3 that for � < �,

�1 (�(0) = 1) =
�

�
;

and that for � � �, �1 is degenerate at f1g
Z. This proves the theorem. �

Appendix

We give the details of the construction described in Section 2.

Step 1. We must to show that � 2 
F implies that P (�n;s 2 
F ; 8s � t) = 1,

for all t. This is obvious, since the total arrival rate in this process is bounded

by �(2n+ 1).

We can compute the generator of the n-process. De�ne

ln� (i) := #fj 2Z\ [�n; n]: j > i and for all i < j0 � j: �(j0) = 1g

and let f be a bounded function on 
F , � 2 
F . The generator of the n-process

is given by

Gnf(�) = lim
t#0

Sn(t)f(�)� f(�)

t

=
X
i

1f�(i)=0g�l
n
�(i) (f (Ti(�))� f(�))

+
X
i

1f�(i)=1g� (f (Ti(�))� f(�))

+
nX

i=�n

1f�(i)=0g� (f (Ti(�))� f(�)) :

Step 2. We shall prove that the n-process (with state space 
F ) is mono-

tone. We show that for � � �, the basic coupling (see Lindvall (1992) p. 177)

(�̂n;t; �̂n;t)(t�0) of �n;t(t�0) and �n;t(t�0) has the property that �̂n;t � �̂t for all t
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with probability 1. In this coupling, we use for both processes the same sequence

of Poisson processes and if both processes have a customer at the same site, we

let these corresponding customers leave at the same time. This is possible since

the exponential distribution has no memory.

Observe that if the starting con�gurations �; � 2 
F have the property that

if both � � � and �(i) = �(i) = 0, then the ipping rate of �(i) is not larger

than the ipping rate of �(i) since ln� (i) � ln� (i). Also, if both � � � and

�(i) = �(i) = 1, then the ipping rate of �(i) is the same as the ipping rate

of �(i). From this we can conclude that the coupling has the property that for

� � �, �̂n;t � �̂n;t for all t with probability 1 (see Lindvall (1992), p. 178).

Step 3. Because of the monotonicity of the n-process we can extend the n-

process to a process with state space 
 by de�ning its semigroup (for f 2 M)

by

Sn(t)f(�) := lim
�2
F ; �"�

Sn(t)f(�):

(The fact that Sn(t) is a semigroup follows from the construction). We show

that Sn(t) is well de�ned, that is, we show that the limit of Sn(t)f(�m) is

independent of the sequence (�m)m2N with elements in 
F that increases to �.

Suppose that there exist an � 2 
 and two sequences (�m)m2N and (�0m)m2N

with �m; �
0
m 2 
F for all m 2 N, �m " �, �0m " � and

lim
m!1

Sn(t)f(�m) 6= lim
m!1

Sn(t)f(�
0
m):

Without loss of generality we may assume that

l2 := lim
m!1

Sn(t)f(�
0
m) > lim

m!1
Sn(t)f(�m) =: l1:

Let � := 1
2(l2 � l1). Then there exists an N 2 N such that for all m > N ,

Sn(t)f(�m) 2 [l1 � �; l1] and there exists an N 0 2 N such that for all m > N 0,

Sn(t)f(�0m) 2 [l2� �; l2] Observe that these intervals are disjoint, which implies

that for m > N and m0 > N 0

Sn(t)f(�
0
m0) > Sn(t)f(�m): (13)
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Take some number k0 > N 0. Then there exist a k > N with �0k0 � �k, so by the

monotonicity of the n-process we get that

Sn(t)f(�
0
k0) � Sn(t)f(�k): (14)

(13) and (14) contradict each other, so the assumption that l1 6= l2 cannot be

right. This implies that Sn(t)f(�) is uniquely de�ned for all � 2 
 and f 2 M.

Step 4. To prove that Sn(t) is monotone in n, we show that there is an appro-

priate coupling of the processes associated to Sn and Sn+1. Let �; � 2 
F , let

� � � and f 2 M.

Again the basic coupling (�̂n;t; �̂n+1;t)(t�0) is a coupling of the processes

�n;t(t�0) and �n+1;t(t�0) with the property that if � � �, then �̂n;t � �̂n+1;t for

all t with probability 1. This coupling shows that for � 2 
F , f 2 M we have

that Sn(t)f(�) � Sn+1(t)f(�).

Now let � 2 
; f 2 M and take an increasing sequence �k, �k 2 
F with

�k " �. We get that for all k, Sn(t)f(�k) � Sn+1(t)f(�k) and taking the limit

k !1 yields:

Sn(t)f(�) � Sn+1(t)f(�):

Step 5. By monotonicity of the semigroup Sn(t) in n, we can de�ne for � 2


; f 2 M

S(t)f(�) = lim
n!1

Sn(t)f(�):

We know that for all n, Sn(t) is a semigroup on bounded functions on 
F :

Because of monotonicity this implies that S(t) is also a Markov semigroup on

M (as in Maes et al. (2000)) and we can extend the de�nition of S(t)f to all

bounded Borel measurable functions as described in Liggett (1980). So there

exists a unique Markov process �t such that S(t)f(�) = E�f(�t), this process

is the SMD.
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