99 research outputs found

    Postoperative Cryptococcus neoformans endocarditi

    Get PDF

    Climate change dynamics and mercury temporal trends in Northeast Arctic cod (Gadus morhua) from the Barents Sea ecosystem

    Get PDF
    The Northeast Arctic cod (Gadus morhua) is the world's northernmost stock of Atlantic cod and is of considerable ecological and economic importance. Northeast Arctic cod are widely distributed in the Barents Sea, an environment that supports a high degree of ecosystem resiliency and food web complexity. Here using 121 years of ocean temperature data (1900–2020), 41 years of sea ice extent information (1979–2020) and 27 years of total mercury (Hg) fillet concentration data (1994–2021, n = 1999, ≥71% Methyl Hg, n = 20) from the Barents Sea ecosystem, we evaluate the effects of climate change dynamics on Hg temporal trends in Northeast Arctic cod. We observed low and consistently stable, Hg concentrations (yearly, least-square means range = 0.022–0.037 mg/kg wet wt.) in length-normalized fish, with a slight decline in the most recent sampling periods despite a significant increase in Barents Sea temperature, and a sharp decline in regional sea ice extent. Overall, our data suggest that recent Arctic amplification of ocean temperature, “Atlantification,” and other perturbations of the Barents Sea ecosystem, along with rapidly declining sea ice extent over the last ∼30 years did not translate into major increases or decreases in Hg bioaccumulation in Northeast Arctic cod. Our findings are consistent with similar long-term, temporal assessments of Atlantic cod inhabiting Oslofjord, Norway, and with recent investigations and empirical data for other marine apex predators. This demonstrates that Hg bioaccumulation is highly context specific, and some species may not be as sensitive to current climate change-contaminant interactions as currently thought. Fish Hg bioaccumulation-climate change relationships are highly complex and not uniform, and our data suggest that Hg temporal trends in marine apex predators can vary considerably within and among species, and geographically. Hg bioaccumulation regimes in biota are highly nuanced and likely driven by a suite of other factors such as local diets, sources of Hg, bioenergetics, toxicokinetic processing, and growth and metabolic rates of individuals and taxa, and inputs from anthropogenic activities at varying spatiotemporal scales. Collectively, these findings have important policy implications for global food security, the Minamata Convention on Mercury, and several relevant UN Sustainable Development Goals.publishedVersio

    Modelling the changes in viscosity during thermal treatment of milk protein concentrate using kinetic data

    Get PDF
    peer-reviewedThis work aimed to model the effect of heat treatment on viscosity of milk protein concentrate (MPC) using kinetic data. MPC obtained after ultrafiltration was subjected to different time-temperature heat treatment combinations. Heat treatment at high temperature and short time (i.e., 100 or 120 °C×30 s) led to a significant increase in viscosity in MPC systems. Second-order reaction kinetic models proved a better fit than zero- or first-order models when fitted for viscosity response to heat treatment. A distinct deviation in the slope of the Arrhenius plot at 77.9 °C correlated to a significant increase in the rate of viscosity development at temperatures above this, confirming the transition of protein denaturation from the unfolding to the aggregation stage. This study demonstrated that heat-induced viscosity of MPC as a result of protein denaturation/aggregation can be successfully modelled in response to thermal treatment, providing useful new information in predicting the effect of thermal treatment on viscosity of MPC

    Effect of pH and heat treatment on viscosity and heat coagulation properties of milk protein concentrate

    Get PDF
    peer-reviewedThe effect of pH, adjusted using either hydrochloric acid (HCl), citric acid or sodium hydroxide, on calcium ion (Ca2+) activity, and consequent changes in viscosity and heat coagulation time (HCT) of milk protein concentrate (MPC) was investigated. Reducing the pH of MPC dispersions resulted in a reduction in their viscosity, which subsequently increased during heat treatment. The maximum heat stability of MPC was observed at pH 6.7. Reducing the pH of MPC from 6.7 to 6.2 resulted in a significant (P < 0.05) increase in Ca2+ activity, and reduction in HCT. Such changes were more extensive using HCl compared with citric acid. Increasing the pH greater than 6.7 also led to a reduction in HCT but a decrease in Ca2+ activity. These results demonstrate the importance of pH adjustment, and choice of acidulant, on Ca2+ activity, viscosity, and heat coagulation properties of MPC concentrates during processing

    Influence of protein standardisation media and heat treatment on viscosity and related physicochemical properties of skim milk concentrate

    Get PDF
    peer-reviewedThe effects of heat treatment and protein standardisation on the physical properties of skim milk concentrates were determined. Protein standardisation was carried out by the addition of lactose or milk permeate to skim milk. Unstandardised and standardised skim milk was subjected to heat treatment temperatures of 90 or 120 °C prior to evaporation whereafter the solids content was increased to 46% (w/w). Viscosity data showed non-standardised concentrates had the highest viscosity, followed by skim standardised with milk permeate followed by that standardised with lactose. Thermal treatment at 120 °C also resulted in a higher viscosity than that at 90 °C for all concentrates. Particle size data of evaporated skim milk showed a bimodal size distribution for skim milk standardised with liquid milk permeate, compared with monomodal distribution profiles for unstandardised skim milk and lactose standardised skim milk. Overall, this study showed that protein standardisation and standardisation media significantly affected concentrate properties

    Short communication: Multi-component interactions causing solidification during industrial-scale manufacture of pre-crystallized acid whey powders

    Get PDF
    peer-reviewedAcid whey (AW) is the liquid co-product arising from acid-induced precipitation of casein from skim milk. Further processing of AW is often challenging due to its high mineral content, which can promote aggregation of whey proteins, which contributes to high viscosity of the liquid concentrate during subsequent lactose crystallization and drying steps. This study focuses on mineral precipitation, protein aggregation, and lactose crystallization in liquid AW concentrates (∼55% total solids), and on the microstructure of the final powders from 2 independent industrial-scale trials. These AW concentrates were observed to solidify either during processing or during storage (24 h) of pre-crystallized concentrate. The more rapid solidification in the former was associated with a greater extent of lactose crystallization and a higher ash-to-protein ratio in that concentrate. Confocal laser scanning microscopy analysis indicated the presence of a loose network of protein aggregates (≤10 µm) and lactose crystals (100–300 µm) distributed throughout the solidified AW concentrate. Mineral-based precipitate was also evident, using scanning electron microscopy, at the surface of AW powder particles, indicating the formation of insoluble calcium phosphate during processing. These results provide new information on the composition- and process-dependent physicochemical changes that are useful in designing and optimizing processes for AW

    Congener-specific accumulation of persistent organic pollutants in marine fish from the Northeast Atlantic Ocean

    Get PDF
    Bioaccumulation of persistent organic pollutants (POPs) in marine fish may pose a health risk to human consumers. Using data from ∼8400 individuals of 15 fish species collected in the North-East Atlantic Ocean (NEAO), we assessed concentrations of individual POP congeners, including dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). POPs analyses were performed with accredited methods using high-resolution gas chromatography/high-resolution mass spectrometry, gas chromatography/tandem mass spectrometry (GC-MS/MS) and GC/MS. The results showed that POPs congener composition profiles were more influenced by fish species than by geography. However, due to long range transport from emissions at lower latitudes, lighter congeners made a larger contribution to the total POPs concentrations in the northernmost areas compared to southern regions. A model was developed to elucidate the relative effects of several factors on POPs concentrations and showed that variation among and within fish species was associated with fat content, fish size, trophic position, and latitude. For the first time, POPs concentrations were shown to increase nonlinearly with fat content, reaching an asymptotic plateau when fat content was > 10%. This study explored detailed POP congener profiles and the factors associated with POPs accumulation in commercially relevant fish harvested from the NEAO.publishedVersio

    Temporal variations in the nutrient content of Norwegian farmed Atlantic salmon (Salmo salar), 2005–2020

    Get PDF
    The changes in the feed of farmed Atlantic salmon (Salmo salar) towards a more plant-based diet affect the nutritional value of the fillets. By compiling the contents of a range of nutrients in 1108 samples of Norwegian farmed Atlantic salmon collected between 2005 and 2020, we found that the median contents of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) have decreased by > 60%. However, farmed Atlantic salmon remains a considerable source of EPA and DHA, with one and two portions being sufficient to meet the weekly adequate intake of EPA and DHA for adults (175 g) and two-year-olds (80 g), respectively. Farmed Atlantic salmon also remains a considerable source of protein, selenium, vitamin B12, and vitamin D3. Together, we demonstrate that farmed Atlantic salmon can contribute substantially to the nutrient intake of the consumers. These data are important for the Norwegian food composition table and future risk–benefit assessments on fatty fish consumption.publishedVersio

    Practice advisory on the appropriate use of NSAIDs in primary care

    Get PDF
    Cyclo-oxygenase (COX)-2 selective and nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) are important in managing acute and chronic pain secondary to inflammation. As a greater understanding of the risks of gastrointestinal (GI), cardiovascular (CV) and renal events with NSAIDs use has emerged, guidelines have evolved to reflect differences in risks among NSAIDs. Updated guidelines have yet to reflect new evidence from recent trials which showed similar CV event rates with celecoxib compared to naproxen and ibuprofen, and significantly better GI tolerability for celecoxib. This practice advisory paper aims to present consensus statements and associated guidance regarding appropriate NSAID use based on a review of current evidence by a multidisciplinary group of expert clinicians. This paper is especially intended to guide primary care practitioners within Asia in the appropriate use of NSAIDs in primary care. Following a literature review, group members used a modified Delphi consensus process to determine agreement with selected recommendations. Agreement with a statement by 75% of total voting members was defined a priori as consensus. For low GI risk patients, any nonselective NSAID plus proton pump inhibitor (PPI) or celecoxib alone is acceptable treatment when CV risk is low; for high CV risk patients, low-dose celecoxib or naproxen plus PPI is appropriate. For high GI risk patients, celecoxib plus PPI is acceptable for low CV risk patients; low-dose celecoxib plus PPI is appropriate for high CV risk patients, with the alternative to avoid NSAIDs and consider opioids instead. Appropriate NSAID prescription assumes that the patient has normal renal function at commencement, with ongoing monitoring recommended. In conclusion, appropriate NSAID use requires consideration of all risks

    Metabolic effects of diet containing blue mussel (Mytilus edulis) and blue mussel-fed salmon in a mouse model of obesity

    Get PDF
    Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.Metabolic effects of diet containing blue mussel (Mytilus edulis) and blue mussel-fed salmon in a mouse model of obesitypublishedVersio
    corecore