23 research outputs found

    The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). I. Pilot Survey: Clump Fragmentation

    Get PDF
    \ua9 2019. The American Astronomical Society. All rights reserved. The ALMA Survey of 70 μm dark High-mass clumps in Early Stages (ASHES) is designed to systematically characterize the earliest stages and constrain theories of high-mass star formation. Twelve massive (>500 M⊙ ), cold (≤15 K), 3.6-70 μm dark prestellar clump candidates, embedded in infrared dark clouds, were carefully selected in the pilot survey to be observed with the Atacama Large Millimeter/submillimeter Array (ALMA). We have mosaicked each clump (∼1 arcmin2) in continuum and line emission with the 12 m, 7 m, and Total Power (TP) arrays at 224 GHz (1.34 mm), resulting in ∼1.″2 resolution (∼4800 au, at the average source distance). As the first paper in the series, we concentrate on the continuum emission to reveal clump fragmentation. We detect 294 cores, from which 84 (29%) are categorized as protostellar based on outflow activity or "warm core" line emission. The remaining 210 (71%) are considered prestellar core candidates. The number of detected cores is independent of the mass sensitivity range of the observations and, on average, more massive clumps tend to form more cores. We find a large population of low-mass (30 M⊙) prestellar cores (maximum mass 11 M⊙). From the prestellar core mass function, we derive a power-law index of 1.17 \ub1 0.10, which is slightly shallower than Salpeter. We used the minimum spanning tree (MST) technique to characterize the separation between cores and their spatial distribution, and to derive mass segregation ratios. While there is a range of core masses and separations detected in the sample, the mean separation and mass per clump are well explained by thermal Jeans fragmentation and are inconsistent with turbulent Jeans fragmentation. Core spatial distribution is well described by hierarchical subclustering rather than centrally peaked clustering. There is no conclusive evidence of mass segregation. We test several theoretical conditions and conclude that overall, competitive accretion and global hierarchical collapse scenarios are favored over the turbulent core accretion scenario

    Imputation-based meta-analysis of severe malaria in three African populations.

    Get PDF
    Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa. Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes are large, and that modern methods for association analysis can control the potential confounding effects of population structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP-based fixed effect analysis; we apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a region-based test to allow for heterogeneity in the location of causal alleles

    A review on carbon nanotubes in an environmental protection and green engineering perspective

    No full text
    corecore