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Supplementary statistical details

Chris Spencer, Gavin Band and Matti Pirinen

Approximate Bayes Factors

To allow for possible di�erences in genetic e�ects across ethnicities or popula-
tions we took a Bayesian approach. Model comparison in the Bayesian frame-
work requires computation of marginal likelihood of the observed data for each
of the compared models. For a model M , this means computing the integral

ˆ
p(Y |θ)p(θ|M) dθ, (1)

where Y is the observed data, θ is the vector of the model parameters, p(Y |θ) is
the likelihood function for the parameters and p(θ|M) is the prior distribution
of the parameters under the model M . We use a logistic regression likelihood
and treat the case-control status as the data Y . The parameters θ include the
intercept, coe�cients of any covariates and the allelic SNP e�ect β, all measured
on the log-odds scale.

To simplify the computations, we follow the approach of Wake�eld [9, 10].
Within each case-control collection, we approximate the logistic regression likeli-
hood (up to a multiplicative constant) by a multivariate normal density function

f(θ; θ̂, V̂θ), centered at the logistic regression maximum likelihood (ML) estimate

θ̂, and having the covariance matrix V̂θ which is the inverse of the observed in-
formation matrix at θ̂. We use �at priors for other parameters than β. Then
the approximate Bayes factor (ABF) for association in the single study reduces
to a ratio of marginal likelihood involving only β:

´
f(β; β̂, SE2

β)p(β|M1) dβ´
f(β; β̂, SE2

β)p(β|M0) dβ
, (2)

where SEβ is the estimated standard error of the ML-estimate β̂, that is, the

square root of the diagonal element of the matrix V̂θ corresponding to the pa-
rameter β.

Under the null model, M0, we place all our prior probability on β = 0 and
under the alternative we specify β|M1 ∼ N(0, σ2). It follows that for any single
study the ABF is the ratio of normal densities:

ABF =
f(β̂; 0, SE2

β + σ2)

f(β̂; 0, SE2
β)

. (3)
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This formula leads to a useful interpretation of the approximations made: it is
as if we treated the ML point estimate β̂ and its asymptotic standard error SEβ
as observed data which de�ne a normal likelihood function over the parameters
of interest. In practice, β̂ and SEβ can be obtained from ML approaches im-
plemented for logistic regression in standard statistical software packages such
as R

To extend the result to a meta-analysis of (say) three independent studies,
we will replace the joint likelihood function of all the parameters by the density
f(β; β̂, V̂β) where β = (β1, β2, β3) and V̂β = diag(SE2

β1
, SE2

β2
, SE2

β3
).

Calculation of the marginal likelihood requires specifying a prior distribution
for the study-wise e�ect sizes β1, β2 and β3. We choose a multivariate normal
distribution with zero mean. To allow us to specify di�erent prior beliefs about
the similarity in e�ect sizes across populations, we use a covariance matrix of
the form

σ2

 1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1

 , (4)

where ρij = ρji is the correlation in e�ect size between the studies i and
j. The approximate marginal likelihood for any given choice of prior parame-
ters is then (up to a multiplicative constant which is independent of the prior
parameters) the value of a multivariate normal density at the ML estimate,

f

 β̂1
β̂2
β̂3

 ;

 0
0
0

 , σ2

 1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1

+

 SE2
β1

0 0

0 SE2
β2

0

0 0 SE2
β3

 .

(5)
By choosing di�erent values for the correlation parameters we can compare
di�erent models of association to the null model of no association.

1. Fixed e�ects model; ρ12 = ρ13 = ρ23 = 1 . The standard meta-analysis
�xed e�ects model can be recovered by setting the correlation between
the true e�ect sizes between cohorts to one. It is interesting to note that
exactly the same ABF is obtained if the estimated e�ect sizes are �rst
combined using a frequentist inverse-variance weighted meta-analysis to
produce a study-wide β̂ and SEβ , and these values are substituted in
equation 3.

2. Independent e�ects model; ρ12 = ρ13 = ρ23 = 0. The independent ef-
fects model explicitly assumes that a priori there is no correlation in e�ect
sizes across studies. In this case the marginal likelihood factorises into
terms for each study, and the study-wide ABF comparing models of as-
sociation to no association can be obtained by multiplying the study-wise
approximate Bayes factors as given in equation (3). Note that this makes
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clear that frequentist meta-analysis approaches, which combine either p-
values or chi-squared statistics across populations, implicitly assume an
independent e�ects model.

3. Correlated e�ects model; ρ12 = ρ13 = ρ23. In between the two models
described above we can specify a prior whereby the e�ects are similar
between models, but importantly, not necessarily the same. We use the
correlated e�ects model to refer to a prior where all pairs of the studies
have the same correlation in e�ect size.

4. Structured e�ects model; The most general form of the model allows
arbitrary correlation between e�ects across studies. This is appropriate
if there is a reason to believe a priori that some studies may have more
similar e�ects than others.

These scenarios represent four broad categories of assumption on e�ect size
across studies. We note that the models 3 and 4 have similarities with a hierar-
chical random e�ects model where the e�ect of each population is chosen from
a common distribution, but we do not discuss these connections further here.
Moreover, we do not investigate models where an unknown subset of the studies
has no e�ect (β = 0).

Evidence for heterogeneity through model comparison

As well as computing ABF s for comparing models of association to the null
model of no association, we can also compare di�erent models of association.
For example, under the assumption that exactly one of the above four models
is correct, (so the space of possible models is (M1,M2,M3,M4) as enumerated
above), we can calculate the posterior probability of the model Mi as

P (Mi|data) =
ABFMi

P (Mi)∑
i (ABFMi

P (Mi))
, (6)

where ABFMi is the approximate Bayes factor comparing model i to the
null model of no association, and P (Mi) is the prior probability of model Mi.
For example, by computing the ratio of the ABF s for models 1 and 2 we could
assess the evidence for heterogeneity of e�ects, and by specifying a prior on the
model space, we could compute the posterior probability of M1 using equation
(6).

Marginal priors on e�ect sizes

The models above all assume a normal prior distribution on the e�ect size. If,
as is the case in our study, the estimated e�ects are derived by �tting a logistic
regression model which assumes that each copy of the risk allele increase odds
of the disease multiplicatively, then eβ is the odds ratio (or relative risk). In
several Bayesian applications in GWAS, the prior on the e�ect size on the log
odds scale has been centered at zero with standard deviation σ = 0.2 [11]. In our
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Figure 1: The 95% highest probability regions of the conditional distribution of
the odds ratio (OR) in study 2 conditional on the OR in study 1 for di�erent
prior assumptions on the correlation in OR between the two studies (given in
the legend).

formulation of the meta-analysis approach we assume the same marginal prior
on e�ect size within each study, although it is straight forward to relax this
assumption. Here we specify a correlation in the odds ratios between studies,
which can be plotted as a conditional distribution. For example Figure 1 shows
probability regions on the e�ect size in a second study (study 2) given the e�ect
size in the �rst study, for di�erent positive correlations on the log-odds scale.

Region-based test

When the true causal variants are not genotyped directly or when a region
contains many tiny e�ects that are too small be identi�ed individually, a proper
region-based test may be more powerful than a traditional single-SNP analysis.
For region-based tests we use a software package MMM [8] for inference using a
linear mixed model as an approximation to logistic regression. The linear mixed
model can be written as

Y = α+Xβ + Z + ε. (7)

where Y is a binary label of case-control status, α is the baseline e�ect,
and X is a matrix of covariates and predictors with associated linear e�ects β.
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The random e�ects include the usual error term ε, and one additional e�ect Z
parameterised and distributed as follows:

Z|(h, σ2) ∼ N(0, hσ2R) and ε|(h, σ2) ∼ N(0, (1− h)σ2I), (8)

where h ∈ [0, 1] and σ2 > 0 are scalars that de�ne how the variance is
decomposed between Z and ε and R is an n× n covariance matrix and I is the
corresponding identity matrix.

Models of this form have been shown to be useful in GWAS for correcting for
relatedness structure by using the additional random e�ect Z to model the cor-
relation in phenotypes due to patterns of relatedness between study individuals
[13, 6, 5, 14, 8]. These approaches compute the matrix R from the correlation
in genotypes between the individuals at an approximately uncorrelated set of
SNPs across the autosomes. A statistical test is then constructed to ask whether
a SNP (a column of X) has an e�ect on the disease risk after accounting for
putatively confounding e�ects of the relatedness structure R. The model can be
e�ciently applied genome-wide by an algorithm that requires a single eigenvalue
decomposition of R and is implemented in a software package MMM [8]. This
linear mixed model approach was also applied in our study to carry out single
SNP analyses.

For region-based tests we applied the same linear mixed model but this
time by including a small number of leading eigenvectors of the genome-wide
correlation matrix as �xed e�ects (in X), in order to account for population
structure, and then determining the relatedness matrix R locally using all the
SNPs within a focused region of the genome (and having minor allele frequency
≥ 1%). Instead of comparing single-SNP models where an element of β, corre-
sponding to the SNP e�ect, is zero (null model) or non-zero (alternative model),
we tested whether h is non-zero. The test is asking whether the �heritability�
(i.e. variance explained by additive genetic e�ects) attributed to the region is
signi�cantly di�erent from zero. Similar test has been recently considered by
[7].

As each region of the genome de�nes its own R matrix, we lose the compu-
tational e�ciency exploited in the program MMM. However, for a data sets of
the size analysed here (up to 5,000 samples per collection) the required matrix
decomposition for any region takes less than 10 minutes on a standard processor,
and the whole analysis was feasible by using a computing cluster.

Further details

There are at least two ways of conceptualizing a test based on local patterns of
relatedness. Perhaps the most helpful is to rewrite the random e�ect Z as a sum
of the contribution of each SNP, which is how the model was recently motivated
to estimate heritability [12] and to de�ne a region-based test [7]. Let the vector
of genotypes across individuals at SNP i be gi and let pi be the corresponding
frequency of the allele 1. Consider the model
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Y = α+Xβ +

L∑
i=1

g∗i γi + ε, (9)

where g∗i = (gi−2pi)/
√
2pi(1− pi) contains the standardised genotypes, L is

the total number of SNPs in the region and the random SNP e�ect is distributed
as

γi ∼ N
(
0, hσ2/L

)
. (10)

Here we see that the contribution of each standardised SNP g∗i is weighted
by a random e�ect γi. It can be shown that the random sum in (9) has a
covariance matrix given by hσ2R, where R is an empirical genotypic correlation
matrix computed over the L SNPs. Thus by standardising the genotypes we
make clear the equivalence with the model de�ned by (7) and (8). It is insightful
to replace the standardised g∗i with the mean centered raw genotypes gi − 2pi
in equation (9) and note that then equation (10) becomes

γi ∼ N
(
0,

hσ2

2pi(1− pi)L

)
. (11)

From this it is clear that setting R to a genotypic correlation matrix implies
that rarer SNPs are allowed to have larger e�ect sizes.

Another way to write the model is to consider R, de�ned by the patterns
of allele sharing within a region, in terms of its eigenvalue decomposition R =
UDUT , where U is an orthonormal matrix of eigenvectors and D is a diagonal
matrix of the corresponding eigenvalues. Then the equation (9) can be written
as

Y = α+Xβ +

n∑
i=1

Uiξi + ε, (12)

where
ξi ∼ N

(
0, dihσ

2
)
. (13)

Here Ui is the ith eigenvector of R (also the vector of positions of each individual
on the ith principal component), and di is the associated eigenvalue. The models
de�ned by equation (9) and (12) are equivalent because the correlation between
the standardised genotypes of two individuals (an element of R) is the same as
the inner product of the positions of two individuals in the principal components
weighted by the proportion of variance that each PCs explain. Written in this
way we see that the test is equivalent to including all principal components of
the local relatedness matrix in a Bayesian linear regression with priors that are
proportional to the corresponding eigenvalues. (See also [1].)

Testing for association

All the computations were done with the software package MMM [8].
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Calculating p -values

When h = 0 and R is not a block-diagonal matrix, the distribution of the
likelihood-ratio statistic from the linear mixed model (7) does not necessarily
follow the standard null distribution of a 50:50 mixture of a point mass at 0
and a χ2

1 distribution [2]. Empirically we found that this standard distribution
of 0.5δ0 +0.5χ2

1 is conservative as the mass at zero was signi�cantly larger than
0.5. Thus the reported p-values from the likelihood ratio test are likely to be
conservative.

As another option we used a score statistic for testing h = 0:

n∑
i=1

(di − 1)
(Ỹi − X̃iβ̂)

2

σ̂2
, (14)

where Ỹ = UTY and X̃ = UTX are transformed data and predictors, U is the
matrix of eigenvectors of R and (di)

n
i=1 are the corresponding eigenvalues and

the ML-estimates β̂ and σ̂2 come from the null model where h = 0.
Under the null model h = 0, the score statistic (14) is distributed as a

mixture
n∑
i=1

(di − 1)χ2
1,i,

where each χ2
1,i is an independent draw from the central chi-square distribu-

tion with one degree of freedom. Our software MMM implements the p-value
computations from this distribution by using Davies method [3] as recently im-
plemented in the R-package CompQuadForm [4]. Previously, similar approach
has been used by [7].

Calculating Bayes factors

The marginal likelihood computations required for the Bayesian model compar-
ison have been implemented in the software package MMM. The null model is
h = 0 and for the alternative model we have used the prior h ∼ Beta(1.5, 100)
having a mean of 0.0148. We focused the alternative model to relatively small
values of h as we expect that any tested region explains at most a small pro-
portion of the total variance. For the other parameters (β and σ2) we used the
same Normal-inverse-gamma prior in both models.
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