9,959 research outputs found

    Nuclear quantum shape-phase transitions in odd-mass systems

    Get PDF
    Microscopic signatures of nuclear ground-state shape phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter -- the number of nucleons -- theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E2E2 reduced transition matrix elements accurately reproduce available data, and exhibit more pronounced discontinuities at neutron number N=90N=90, compared to the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared to the corresponding Sm isotopes.Comment: 6 pages, 4 figure

    A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times

    Full text link
    In this paper, we provide a matrix-analytic solution for randomized load balancing models (also known as \emph{supermarket models}) with phase-type (PH) service times. Generalizing the service times to the phase-type distribution makes the analysis of the supermarket models more difficult and challenging than that of the exponential service time case which has been extensively discussed in the literature. We first describe the supermarket model as a system of differential vector equations, and provide a doubly exponential solution to the fixed point of the system of differential vector equations. Then we analyze the exponential convergence of the current location of the supermarket model to its fixed point. Finally, we present numerical examples to illustrate our approach and show its effectiveness in analyzing the randomized load balancing schemes with non-exponential service requirements.Comment: 24 page

    Global analysis of quadrupole shape invariants based on covariant energy density functionals

    Full text link
    Coexistence of different geometric shapes at low energies presents a universal structure phenomenon that occurs over the entire chart of nuclides. Studies of the shape coexistence are important for understanding the microscopic origin of collectivity and modifications of shell structure in exotic nuclei far from stability. The aim of this work is to provide a systematic analysis of characteristic signatures of coexisting nuclear shapes in different mass regions, using a global self-consistent theoretical method based on universal energy density functionals and the quadrupole collective model. The low-energy excitation spectrum and quadrupole shape invariants of the two lowest 0+0^{+} states of even-even nuclei are obtained as solutions of a five-dimensional collective Hamiltonian (5DCH) model, with parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy density functional PC-PK1, and a finite-range pairing interaction. The theoretical excitation energies of the states: 21+2^+_1, 41+4^+_1, 02+0^+_2, 22+2^+_2, 23+2^+_3, as well as the B(E2;01+21+)B(E2; 0^+_1\to 2^+_1) values, are in very good agreement with the corresponding experimental values for 621 even-even nuclei. Quadrupole shape invariants have been implemented to investigate shape coexistence, and the distribution of possible shape-coexisting nuclei is consistent with results obtained in recent theoretical studies and available data. The present analysis has shown that, when based on a universal and consistent microscopic framework of nuclear density functionals, shape invariants provide distinct indicators and reliable predictions for the occurrence of low-energy coexisting shapes. This method is particularly useful for studies of shape coexistence in regions far from stability where few data are available.Comment: 13 pages, 3 figures, accepted for publication in Phys. Rev.

    Multifunctional Bracts in the Dove Tree Davidia involucrata (Nyssaceae:Cornales)

    Get PDF
    Although there has been much experimental work on floral traits that are under selection from mutualists and antagonists, selection by abiotic environmental factors on flowers has been largely ignored. Here we test whether pollen susceptibility to rain damage could have played a role in the evolution of the reproductive architecture of Davidia involucrata, an endemic in the mountains of western China. Flowers in this tree species lack a perianth and are arranged in capitula surrounded by large (up to 10 cm#5 cm) bracts that at anthesis turn from green to white, losing their photosynthetic capability. Flowers are nectarless, and pollen grains are presented on the recurved anther walls for 5–7 days. Flower visitors, and likely pollinators, were mainly pollen-collecting bees from the genera Apis, Xylocopa, Halictus, and Lasioglossum. Capitula with natural or white paper bracts attracted significantly more bees per hour than capitula that had their bracts removed or replaced by green paper. Experimental immersion of pollen grains in water resulted in rapid loss of viability, and capitula with bracts lost less pollen to rain than did capitula that had their bracts removed, suggesting that the bracts protect the pollen from rain damage as well as attracting pollinators

    1I/2017 U1 (`Oumuamua) is Hot: Imaging, Spectroscopy and Search of Meteor Activity

    Get PDF
    1I/2017 U1 (`Oumuamua), a recently discovered asteroid in a hyperbolic orbit, is likely the first macroscopic object of extrasolar origin identified in the solar system. Here, we present imaging and spectroscopic observations of \textquoteleft Oumuamua using the Palomar Hale Telescope as well as a search of meteor activity potentially linked to this object using the Canadian Meteor Orbit Radar. We find that \textquoteleft Oumuamua exhibits a moderate spectral gradient of 10%±6% (100 nm)110\%\pm6\%~(100~\mathrm{nm})^{-1}, a value significantly lower than that of outer solar system bodies, indicative of a formation and/or previous residence in a warmer environment. Imaging observation and spectral line analysis show no evidence that \textquoteleft Oumuamua is presently active. Negative meteor observation is as expected, since ejection driven by sublimation of commonly-known cometary species such as CO requires an extreme ejection speed of 40\sim40 m s1^{-1} at 100\sim100 au in order to reach the Earth. No obvious candidate stars are proposed as the point of origin for \textquoteleft Oumuamua. Given a mean free path of 109\sim10^9 ly in the solar neighborhood, \textquoteleft Oumuamua has likely spent a very long time in the interstellar space before encountering the solar system.Comment: ApJL in pres
    corecore