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Nuclear quantum shape-phase transitions in odd-mass systems
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Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored
starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle
coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the
number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts,
spectroscopic quadrupole moments, and E2 reduced transition matrix elements accurately reproduce available
data and exhibit more-pronounced discontinuities at neutron number N = 90 compared with the adjacent even-
even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can
be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts
predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker
proton pairing correlations compared with the corresponding Sm isotopes.
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Quantum-mechanical systems can undergo zero-
temperature phase transitions upon variation of a nonthermal
control parameter. Quantum phase transitions (QPTs) present
a very active field of research and have found a variety of
applications in many areas of physics and chemistry [1,2].
Nuclear QPTs, in particular, correspond to shape transitions
between competing ground-state phases induced by variation
of a nonthermal control parameter (number of nucleons)
[3–7]. Most experimental and theoretical studies of first- and
second-order nuclear QPTs have considered systems with
even numbers of protons and neutrons [8–19]. QPTs in odd-A
nuclei present a more complex phenomenon because of the
coupling between single-particle and collective degrees of
freedom. The crucial issues for QPTs in odd-A systems are the
influence of the unpaired fermion(s) on the precise location
and nature of the phase transition, empirical signatures of
QPTs, and the definition and computation of order parameters
[20,21]. In recent years, phenomenological geometric models
with single- or multi-j state coupling [22–25], the interacting
boson-fermion framework [23,26,27], and microscopic energy
density functionals [28,29] have been employed in extensive
studies of QPTs in odd-mass nuclei.

In this paper we report a microscopic study of QPT in odd-
mass Eu isotopes, calculate a series of observables that can be
related to order parameters (low-energy spectra, two-neutron
separation energies, isotope shifts, spectroscopic quadrupole
moments, and reduced transition matrix elements), both for
odd-mass nuclei and the adjacent even-even isotopes, and
analyze the polarization effect of the unpaired nucleon on the

*zpliphy@swu.edu.cn

QPT. The choice of Eu isotopes is motivated by the fact that
the best example of a QPT in atomic nuclei is probably in the
rare-earth region with N ≈ 90 neutrons, where a transition be-
tween spherical and axially symmetric equilibrium shapes has
been extensively investigated both experimentally [11,30–33]
and by using a number of theoretical methods [14–17,34].
Moreover, the QPT in the odd-proton and even-neutron Eu
isotopes is determined by the same control parameter; that is,
the number of neutrons, as in the adjacent even-even Sm and
Gd isotopes.

Our model is based on the nuclear covariant density
functional theory (CDFT) [35–38]; specifically, the rela-
tivistic Hartree–Bogoliubov (RHB) implementation of the
CDFT framework, which has successfully been applied to
the description of a variety of structure phenomena over the
entire chart of nuclides. Modelling excitation spectra and
electromagnetic transition rates requires including correlations
beyond the static mean field through the restoration of broken
symmetries and configuration mixing of symmetry-breaking
product states. In the present analysis we employ a general-
ized five-dimensional collective Hamiltonian (5DCH), with
quadrupole deformations as dynamical collective coordinates
for the even-A system. The microscopic self-consistent so-
lutions of deformation-constrained triaxial RHB calculations:
the single-particle wave functions, occupation probabilities,
and quasiparticle energies, are used to calculate the Hamilto-
nian parameters. The resulting collective potential and inertia
parameters as functions of collective coordinates determine
the dynamics of the 5DCH [39,40]. For the odd-mass system,
we add a quasiparticle to 5DCH and construct a microscopic
core-quasiparticle coupling (CQC) Hamiltonian, for which the
collective degrees of freedom of the core and the fermion
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degrees of freedom of the quasiparticle are described within the
same CDFT [41]. The inclusion of both neighboring even-even
core nuclei in the CQC Hamiltonian enables the model to take
into account shape polarization effects; that is, differences
in shapes and related observables between two cores, which
are critical for transitional nuclei. The CQC Hamiltonian
predicts excitation energies, kinematic and dynamic moments
of inertia, and transition rates that are in very good agreement
with experiments for deformed odd-mass nuclei [41].

The present analysis starts with the calculation of total-
energy surfaces as functions of quadrupole-deformation co-
ordinates for the even-even Sm and Gd isotopes, using the
constrained RHB model based on the PC-PK1 density func-
tional [42] in the particle-hole channel, and a finite-range
separable pairing force [43] in the particle-particle channel.
The deformation-energy surfaces are displayed in Fig. 1
and exhibit a distinct evolution of prolate deformation with
increasing neutron number, from the nearly spherical 148Sm
and 150Gd, to the well-deformed prolate 154Sm and 156Gd, as
well as the reduction of the γ dependence of the potentials.
The energy surfaces of 152Sm and 154Gd indicate that these are
transitional nuclei, characterized by a softer potential around
the equilibrium minimum in the β direction. Therefore, with
increasing N the shape evolution in Sm and Gd isotopes
undergoes a QPT between the vibrational and rotational limits
of the Casten symmetry triangle [4], with 152Sm and 154Gd
being located closest to the critical point.

Even though shape coexistence and transitions in nuclei
have been extensively explored by considering potential-
energy surfaces, a quantitative study of QPT must go beyond
the simple Landau approach and include direct computation
of observables related to order parameters. In the following
we consider spectroscopic properties of odd-mass Eu isotopes
that can be associated with order parameters of a shape-phase
transition.

Using Sm and Gd as the collective core nuclei, one can
construct a microscopic core-quasiparticle coupling Hamilto-
nian for odd-mass Eu isotopes. The dynamics of the CQC
Hamiltonian is determined by the energies, quadrupole ma-
trix elements, and average pairing gaps corresponding to
the spherical single-particle states of the unpaired nucleon,
and collective excitation states of the two cores, which are
calculated by using the triaxial RHB method combined with the
5DCH. The Fermi level λ and coupling strength χ of the core-
quasiparticle quadrupole interaction are phenomenological
parameters adjusted to reproduce the ground-state spin and/or
the excitation energies of few lowest levels, separately for
positive- and negative-parity states [41].

Figure 2 displays the low-energy positive- and negative-
parity bands of 149,151,153,155Eu isotopes as functions of angular
momentum, in comparison with available data [44]. The
ground-state bands of the adjacent even-even Sm isotopes
are also included. The calculated energy levels are grouped
into bands according to the dominant E2 decay pattern. One
notices that the theoretical results are in good agreement with
experiment, not only for all the ground-state bands and lowest-
lying negative-parity bands, but also for the one-quasiparticle
excited bands. Only the positive-parity bands 2 and 3 in 149Eu,
and the negative-parity band 2 in 151Eu are too high compared

FIG. 1. Self-consistent RHB triaxial quadrupole energy surfaces
in the β-γ plane (0◦ � γ � 60◦) for Sm and Gd isotopes. All energies
are normalized with respect to the binding energy of the corresponding
ground state. The contours join points on the surface with the same
energy, and the separation between neighboring contours is 0.5 MeV.

with the data, possibly because the model space does not
include higher-order quasiparticle excitations. The calculated
negative-parity band 2 of 153,155Eu exhibits a staggering due
to Coriolis coupling that is too strong, but this can be resolved
by adding a magnetic-dipole particle-core interaction term to
the model Hamiltonian [45]. One also notices that the behavior
of the excitation energies versus angular momentum for odd-
mass Eu isotopes is consistent with that in the adjacent even-
even Sm isotopes; namely, from a nearly linear dependence
characteristic for a spherical vibrator to a parabolic dependence
of an axial rotor as neutron number increases. We note that the
Sm isotopes, and 152Sm in particular, were the first reported
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FIG. 2. Low-energy positive-parity (left panels) and negative-
parity (middle panels) bands of 149,151,153,155Eu isotopes as functions of
angular momentum, in comparison with the available data [44]. The
excitation energies of the negative-parity states are shown relative
to the corresponding lowest state. The ground-state bands of the
adjacent even-even Sm isotopes are also shown in the panels on the
right. The theoretical predictions for the odd-mass and even-even
isotopes are obtained by using the microscopic CQC Hamiltonian and
5DCH, respectively, based on the PC-PK1 energy density functional
and a finite-range separable pairing force. The choice of the Fermi
level and coupling strength (λ, χ ) in the CQC Hamiltonian: (−4.80,
8.80), (−8.60, 13.4), (−8.05, 11.0), and (−8.70, 9.80) reproduces the
positive-parity bands of 149Eu, 151Eu, 153Eu, and 155Eu, respectively.
The corresponding values of (λ, χ ) for the negative-parity bands of
the four nuclei are (−5.95, 5.00), (−9.70, 24.0), (−6.92, 20.0), and
(−8.00, 19.6), respectively. λ is in units of MeV and χ in MeV/b2.

empirical example of a first-order QPT between a vibrator
and axial rotor phases [11]. A corresponding phase transition
occurs in the odd-mass Eu isotopes. The negative-parity bands
and the positive-parity excited bands exhibit a weak-coupling
�J = 2 structure for 149,151Eu, and rapidly change to the
�J = 1 systematics of the strong-coupling limit for 153,155Eu.

To identify quantitative signatures of a possible shape QPT,
we investigate the observables related to order parameters
as functions of the control parameter—nucleon number. A
critical point of a QPT is characterized by a sudden change
in the order parameter, even though one expects that in small
systems with a finite number of particles the transition is,
to a certain extent, smoothed out. In Fig. 3 we analyze the
evolution with neutron number of the two-neutron separation
energies S2n, isotope shifts of the ground-state charge radii:
〈r2

c 〉A − 〈r2
c 〉A−2, spectroscopic quadrupole moments Qs , and

FIG. 3. (a)–(d) Evolution of the two-neutron separation energies
S2n, isotope shifts of the ground-state charge radii 〈r2

c 〉A − 〈r2
c 〉A−2,

spectroscopic quadrupole moments Qs , and reduced transition matrix
elements 〈Jf ||E2||Ji〉2, as functions of the neutron number in odd-
mass Eu isotopes, and (e)–(h) adjacent even-even Sm isotopes. The
values calculated with the microscopic CQC Hamiltonian for Eu
isotopes, and the 5DCH for Sm isotopes, are compared with available
data [44]. Green triangles denote observables calculated with a CQC
Hamiltonian that includes only Sm even-even cores.

matrix elements 〈Jf ||E2||Ji〉2 for transitions to the ground
state. The theoretical values are directly computed by using
the excitation energies and collective wave functions obtained
with the CQC Hamiltonian. For comparison, we also include
the isotopic dependence of the corresponding quantities in
the adjacent even-even Sm nuclei, with the predictions of the
5DCH. Very similar values are also obtained for the even-A
Gd isotopes.
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FIG. 4. (a) Probabilities of the dominant configurations, and (b)
quasiparticle energies, for the ground states of Eu isotopes calculated
with the CDFT-based CQC Hamiltonian. In panel (b) the experimental
odd-even mass differences �(5) are calculated by using the five-point
formula [47].

The agreement between the predictions and corresponding
data is very good both for the even-even and odd-mass
nuclei, especially considering that CDFT based on nuclear
and pairing functionals are applicable over the entire chart
of nuclides. In the context of the present study, an especially
important result in Fig. 3 is that all considered observables
present pronounced discontinuities at N = 90. This points to
the occurrence of a phase transition between spherical and
quadrupole-deformed prolate shapes, and the N = 90 isotones
appear to be closest to the critical point. Furthermore, it is
remarkable that the discontinuities of the order parameters
for the odd-mass Eu isotopes are even steeper than those
in the even-even Sm isotopes, particularly the isotope shifts
and spectroscopic quadrupole moments. This means that the
quadrupole interaction between the core and the unpaired
fermion reinforces the QPT in odd-mass nuclei compared
with the adjacent even-even isotopes. The enhancement of
QPT in odd-mass systems was also discussed in Refs. [20,46]
by analyzing the contribution of deformation to two-neutron
separation energies. Here we not only reproduce the sharper
discontinuities in a microscopic calculation but are also able
to verify the enhancement of QPT in the odd-mass system by
considering several observables.

The mechanism of the enhancement of QPT in odd-mass
system is illustrated in Fig. 4, where we plot the probabilities
of the dominant configurations in the ground states of the Eu
isotopes and, in the lower panel, the corresponding quasipar-
ticle energies. The quasiparticle energy of the ground state
corresponds to the lowest eigenvalue of the CQC Hamiltonian,
and it is calculated as the difference between the total energy
of the odd-mass nucleus and the average value of the energies
of the two even-even cores. This is, of course, related to
pairing correlations, and we compare the theoretical values
to the empirical proton pairing gaps calculated by using
the five-point formula [47]. In Fig. 4(a) the ground state
of 149Eu predominantly corresponds to the 2d5/2 spherical
proton configuration, while those of 151,153,155Eu are dominated
by the 1g7/2 configuration. One notices the rapid transition
from configurations in which, because of shape fluctuations,
the unpaired proton is almost equally coupled to both the
Sm and Gd core low-spin yrast states, to ground states in
the N = 90 and N = 92 Eu nuclei in which the proton is
predominantly coupled to the Gd core. This is because, with
the increase of neutron number, both Sm and Gd become
markedly prolate deformed, but the Gd isotopes exhibit a
slightly larger deformation, as evidenced by the spectroscopic
quadrupole moments and matrix elements 〈Jf ||E2||Ji〉2 for
transitions between yrast states. Consequently, the quadrupole
core-proton interaction will favor coupling to the Gd core, and
this corresponds to a shape polarization effect that reinforces
the QPT observed in the even-even isotopes. In addition, Gd
exhibits a proton shell at Z = 64, and one expects a weaker
proton pairing compared with Sm. The predominant coupling
of the odd proton hole to the Gd core in Eu isotopes with
N � 90 leads to the the sudden reduction of the ground-state
quasiparticle energy at N = 90 [cf. Fig. 4(b)]. This is also
reflected in the pronounced kink observed for the two-neutron
separation energies in odd-A Eu isotopes, as compared with
the rather flat behavior of S2n around the critical point in the
adjacent Sm and Gd isotopes [Figs. 3(a) and 3(e)].

We note that a similar analysis of quantum shape phase
transitions in odd-A Eu and Sm was performed in Ref. [28]
by using a framework based on EDFs and the particle-plus-
boson-core coupling. The interacting boson model core Hamil-
tonian, as well as the single-particle energies and occupation
probabilities of the unpaired nucleon, are completely deter-
mined by constrained self-consistent mean-field calculations
for a specific choice of the EDF and paring interaction. The
strength parameters of the particle-core coupling are adjusted
to reproduce selected spectroscopic properties of the odd-mass
system. Several quantities that can be related to quantum
order parameters were computed and their evolution with
neutron number analyzed. However, in contrast with the CQC
Hamiltonian used in the present calculation, only the even-
even Sm isotopes were considered as core nuclei; that is, the
odd-fermion was only coupled to the corresponding A − 1
core nucleus. With this choice of the boson core Hamiltonian
one cannot analyze the mechanism that, in the present study,
enhances the first-order quantum phase transition in odd-mass
systems. Namely, starting from the critical point at N = 90, the
odd-proton predominantly couples to the A + 1 Gd core nuclei
characterized by larger quadrupole deformation and weaker
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proton pairing correlations compared with the corresponding
Sm isotopes. This effect is quantified in Fig. 3 where, with
green triangles, we denote the isotope shifts of the ground-
state charge radii, the spectroscopic quadrupole moments, and
reduced transition matrix elements of odd-mass Eu isotopes
calculated with a CQC Hamiltonian that is based only on Sm
even-even cores. Obviously in this case the phase transition is
less pronounced, and the agreement of the calculated ground-
state quadrupole moments with data is not as good as in the
case when the odd proton is allowed to couple to the A + 1 Gd
core.

In conclusion, a microscopic analysis of low-energy spectra
and observables related to order parameters for a first-order
nuclear QPT between spherical and axially deformed shapes
in odd-mass Eu isotopes has been performed by solving a
core-quasiparticle coupling Hamiltonian based on the PC-
PK1 energy density functional. The calculated two-neutron
separation energies, isotope shifts, spectroscopic quadrupole
moments, and E2 reduced transition matrix elements are in

very good agreement with available data and exhibit sharper
discontinuities at neutron number N = 90 compared with
those in adjacent even-even Sm and Gd isotopes. The results
indicate an enhancement of signatures of the first-order quan-
tum phase transition in the odd-mass system. By analyzing
the dominant configurations and quasiparticle energies of the
ground state in Eu isotopes, the amplification of the QPT in
the odd-mass system can be attributed to the shape polarization
effect of the unpaired proton.
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