68 research outputs found

    Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.

    Get PDF
    Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit

    Isolation of Unknown Genes from Human Bone Marrow by Differental Screening and Single-Pass cDNA Sequences Determination

    Get PDF
    A cDNA sequencing project was initiated to characterize gene expression in human bone marrow and develop strategies to isolate novel genes. Forty-eight random cDNAs from total human bone marrow were subjected to single-pass DNA sequence analysis to determine a limited complexity of mRNAs expressed in the bone marrow. Overall, 8 cDNAs (17%) showed no similarity to known sequences. Information from DNA sequence analysis was used to develop a differential prescreen to subtract unwanted cDNAs and to enrich for unknown cDNAs. Forty-eight cDNAs that were negative with a complex probe were subject to single-pass DNA sequence determination. Of these prescreened cDNAs, the number of unknown sequences increased to 23 (48%). Unknown cDNAs were also characterized by RNA expression analysis using 25 different human leukemic cell lines. Of 13 unknown cDNAs tested, 10 were expressed in all cell types tested and 3 revealed a hematopoietic lineage-restricted expression pattern. Interestingly, while a total of only 96 bone marrow cDNAs were sequenced, 31 of these cDNAs represent sequences from unknown genes and 12 showed significant similarities to sequences in the data bases. One cDNA revealed a significant similarity to a serine/threonine-protein kinase at the amino acid level (56% identity for 123 amino acids) and may represent a previously unknown kinase. Differential screening techniques coupled with single-pass cDNA sequence analysis may prove to be a powerful and simple technique to examine developmental gene expression

    Alignment of dense molecular core morphology and velocity gradients with ambient magnetic fields

    Get PDF
    Studies of dense core morphologies and their orientations with respect to gas flows and the local magnetic field have been limited to only a small sample of cores with spectroscopic data. Leveraging the Green Bank Ammonia Survey alongside existing sub-millimeter continuum observations and Planck dust polarization, we produce a cross-matched catalogue of 399 dense cores with estimates of core morphology, size, mass, specific angular momentum, and magnetic field orientation. Of the 399 cores, 329 exhibit 2D vLSR\mathrm{v}_\mathrm{LSR} maps that are well fit with a linear gradient, consistent with rotation projected on the sky. We find a best-fit specific angular momentum and core size relationship of J/MR1.82±0.10J/M \propto R^{1.82 \pm 0.10}, suggesting that core velocity gradients originate from a combination of solid body rotation and turbulent motions. Most cores have no preferred orientation between the axis of core elongation, velocity gradient direction, and the ambient magnetic field orientation, favouring a triaxial and weakly magnetized origin. We find, however, strong evidence for a preferred anti-alignment between the core elongation axis and magnetic field for protostellar cores, revealing a change in orientation from starless and prestellar populations that may result from gravitational contraction in a magnetically-regulated (but not dominant) environment. We also find marginal evidence for anti-alignment between the core velocity gradient and magnetic field orientation in the L1228 and L1251 regions of Cepheus, suggesting a preferred orientation with respect to magnetic fields may be more prevalent in regions with locally ordered fields.Comment: 33 pages, 28 figures, accepted to MNRA

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    tereticornis

    No full text
    Eucalyptus tereticornis  SmithForest red gum, Forest redgumca. 0.8 mi. NE of Anaheim, ca. 3 mi. So. of Imperial Hwy. between Esperanza Rd. & Riverside Fwy., Atwoodcultivated in loam-sandy soil in sun250 feettree 30 ft. tal

    xantiana

    No full text
    Chaenactis xantiana  A. GrayFleshcolor pincushion,  Xantus pincushion, Xantus' chaenactisca 6 mi SW of Lancaster in Quartz Hill on Ave. M., 1/2 mi E of 60th Stgrowing in sandy-loam soil in sun2335 feetinfrequent in valley grasslandsannual herb with white fl

    Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries.

    No full text
    A configuration of three-dimensional Ni-Si nanocable array anodes is proposed to overcome the severe volume change problem of Si during the charging-discharging process. In the fabrication process, a simple and low cost electrodeposition is employed to deposit Si instead of the common expansive vapor phase deposition methods. The optimum composite nanocable array electrode achieves a high specific capacity ~1900 mA h g(-1) at 0.05 C. After 100 cycles at 0.5 C, 88% of the initial capacity (~1300 mA h g(-1)) remains, suggesting its good capacity retention ability. The high performance of the composite nanocable electrode is attributed to its excellent adhesion of the active material on the three-dimensional current collector and short ionic/electronic transport pathways during cycling
    corecore