111 research outputs found

    Cell-free DNA analysis in healthy individuals by next-generation sequencing: a proof of concept and technical validation study.

    Get PDF
    Pre-symptomatic screening of genetic alterations might help identify subpopulations of individuals that could enter into early access prevention programs. Since liquid biopsy is minimally invasive it can be used for longitudinal studies in healthy volunteers to monitor events of progression from normal tissue to pre-cancerous and cancerous condition. Yet, cell-free DNA (cfDNA) analysis in healthy individuals comes with substantial challenges such as the lack of large cohort studies addressing the impact of mutations in healthy individuals or the low abundance of cfDNA in plasma. In this study, we aimed to investigate the technical feasibility of cfDNA analysis in a collection of 114 clinically healthy individuals. We first addressed the impact of pre-analytical factors such as cfDNA yield and quality on sequencing performance and compared healthy to cancer donor samples. We then confirmed the validity of our testing strategy by evaluating the mutational status concordance in matched tissue and plasma specimens collected from cancer patients. Finally, we screened our group of healthy donors for genetic alterations, comparing individuals who did not develop any tumor to patients who developed either a benign neoplasm or cancer during 1-10 years of follow-up time. To conclude, we have established a rapid and reliable liquid biopsy workflow that allowed us to study genomic alterations with a limit of detection as low as 0.08% of variant allelic frequency in healthy individuals. We detected pathogenic cancer mutations in four healthy donors that later developed a benign neoplasm or invasive breast cancer up to 10 years after blood collection. Even though larger prospective studies are needed to address the specificity and sensitivity of liquid biopsy as a clinical tool for early cancer detection, systematic screening of healthy individuals will help understanding early events of tumor formation

    Psip1/p52 regulates posterior Hoxa genes through activation of lncRNA Hottip

    Get PDF
    Long noncoding RNAs (lncRNAs) have been implicated in various biological functions including the regulation of gene expression, however, the functionality of lncRNAs is not clearly understood and conflicting conclusions have often been reached when comparing different methods to investigate them. Moreover, little is known about the upstream regulation of lncRNAs. Here we show that the short isoform (p52) of a transcriptional co-activator—PC4 and SF2 interacting protein (Psip1), which is known to be involved in linking transcription to RNA processing, specifically regulates the expression of the lncRNA Hottip–located at the 5’ end of the Hoxa locus. Using both knockdown and knockout approaches we show that Hottip expression is required for activation of the 5’ Hoxa genes (Hoxa13 and Hoxa10/11) and for retaining Mll1 at the 5’ end of Hoxa. Moreover, we demonstrate that artificially inducing Hottip expression is sufficient to activate the 5’ Hoxa genes and that Hottip RNA binds to the 5’ end of Hoxa. By engineering premature transcription termination, we show that it is the Hottip lncRNA molecule itself, not just Hottip transcription that is required to maintains active expression of posterior Hox genes. Our data show a direct role for a lncRNA molecule in regulating the expression of developmentally-regulated mRNA genes in cis

    The protein histidine phosphatase LHPP is a tumour suppressor

    Get PDF
    Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic

    Impaired lymphocyte transformation and capping in autoimmune thrombocytopenic purpura

    No full text

    Impaired lymphocyte transformation and capping in autoimmune thrombocytopenic purpura

    No full text
    • …
    corecore