166 research outputs found

    DDT-RELATED PROTEIN4-IMITATION SWITCH alters nucleosome distribution to relieve transcriptional silencing in Arabidopsis

    Full text link
    DNA methylation is a conserved epigenetic modification that is typically associated with silencing of transposable elements and promoter methylated genes. However, some DNA-methylated loci are protected from silencing, allowing transcriptional flexibility in response to environmental and developmental cues. Through a genetic screen in Arabidopsis (Arabidopsis thaliana), we uncovered an antagonistic relationship between the MICRORCHIDIA (MORC) protein and the IMITATION SWITCH (ISWI) complex in regulating the DNA-methylated SUPPRESSOR OF DRM1 DRM2 CMT3 (SDC) reporter. We demonstrate that components of the plant-specific ISWI complex, including CHROMATIN REMODELING PROTEIN11 (CHR11), CHR17, DDT-RELATED PROTEIN4 (DDR4), and DDR5, function to partially de-repress silenced genes and transposable elements (TEs), through their function in regulating nucleosome distribution. This action also requires the known transcriptional activator DNAJ proteins, providing a mechanistic link between nucleosome remodeling and transcriptional activation. Genome-wide studies revealed that DDR4 causes changes in nucleosome distribution at numerous loci, a subset of which is associated with changes in DNA methylation and/or transcription. Our work reveals a mechanism for balancing transcriptional flexibility and faithful silencing of DNA-methylated loci. As both ISWI and MORC family genes are widely distributed across plant and animal species, our findings may represent a conserved eukaryotic mechanism for fine-tuning gene expression under epigenetic regulation

    Phenylboronic ester-modified polymeric nanoparticles for promoting TRP2 peptide antigen delivery in cancer immunotherapy

    Get PDF
    The tremendous development of peptide-based cancer vaccine has attracted incremental interest as a powerful approach in cancer management, prevention and treatment. As successful as tumor vaccine has been, major challenges associated with achieving efficient immune response against cancer are (1) drainage to and retention in lymph nodes; (2) uptake by dendritic cells (DCs); (3) activation of DCs. In order to overcome these barriers, here we construct PBE-modified TRP2 nanovaccine, which comprises TRP2 peptide tumor antigen and diblock copolymer PEG-b-PAsp grafted with phenylboronic ester (PBE). We confirmed that this TRP2 nanovaccine can be effectively trapped into lymph node, uptake by dendritic cells and induce DC maturation, relying on increased negative charge, ROS response and pH response. Consistently, this vehicle loaded with TRP2 peptide could boost the strongest T cell immune response against melanoma in vivo and potentiate antitumor efficacy both in tumor prevention and tumor treatment without any exogenous adjuvant. Furthermore, the TRP2 nanovaccine can suppress the tumor growth and prolong animal survival time, which may result from its synergistic effect of inhibiting tumor immunosuppression and increasing cytotoxic lymphocyte (CTL) response. Hence this type of PBE-modified nanovaccine would be widely used as a simple, safe and robust platform to deliver other antigen in cancer immunotherapy

    MiR-23a Regulates Skin Langerhans Cell Phagocytosis and Inflammation-Induced Langerhans Cell Repopulation

    Get PDF
    Langerhans cells (LCs) are skin-resident macrophage that act similarly to dendritic cells for controlling adaptive immunity and immune tolerance in the skin, and they are key players in the development of numerous skin diseases. While TGF-ÎČ and related downstream signaling pathways are known to control numerous aspects of LC biology, little is known about the epigenetic signals that coordinate cell signaling during LC ontogeny, maintenance, and function. Our previous studies in a total miRNA deletion mouse model showed that miRNAs are critically involved in embryonic LC development and postnatal LC homeostasis; however, the specific miRNA(s) that regulate LCs remain unknown. miR-23a is the first member of the miR-23a-27a-24-2 cluster, a direct downstream target of PU.1 and TGF-b, which regulate the determination of myeloid versus lymphoid fates. Therefore, we used a myeloid-specific miR-23a deletion mouse model to explore whether and how miR-23a affects LC ontogeny and function in the skin. We observed the indispensable role of miR-23a in LC antigen uptake and inflammation-induced LC epidermal repopulation; however, embryonic LC development and postnatal homeostasis were not affected by cells lacking miR23a. Our results suggest that miR-23a controls LC phagocytosis by targeting molecules that regulate efferocytosis and endocytosis, whereas miR-23a promotes homeostasis in bone marrow-derived LCs that repopulate the skin after inflammatory insult by targeting Fas and Bcl-2 family proapoptotic molecules. Collectively, the context-dependent regulatory role of miR-23a in LCs represents an extra-epigenetic layer that incorporates TGF-b- and PU.1-mediated regulation during steady-state and inflammation-induced repopulation

    Mannose‐Modified Multi‐Walled Carbon Nanotubes as a Delivery Nanovector Optimizing the Antigen Presentation of Dendritic Cells

    Full text link
    Dendritic cells (DCs) based cancer immunotherapy is largely dependent on adequate antigen delivery and efficient induction of DCs maturation to produce sufficient antigen presentation and ultimately lead to substantial activation of tumor‐specific CD8+ T cells. Carbon nanotubes (CNTs) have attracted great attention in biomedicine because of their unique physicochemical properties. In order to effectively deliver tumor antigens to DCs and trigger a strong anti‐tumor immune response, herein, a specific DCs target delivery system was assembled by using multi‐walled carbon nanotubes modified with mannose which can specifically bind to the mannose receptor on DCs membrane. Ovalbumin (OVA) as a model antigen, could be adsorbed on the surface of mannose modified multi‐walled carbon nanotubes (Man‐MWCNTs) with a large drug loading content. This nanotube‐antigen complex showed low cytotoxicity to DCs and was efficiently engulfed by DCs to induce DCs maturation and cytokine release in vitro, indicating that it could be a potent antigen‐adjuvant nanovector of efficient antigen delivery for therapeutic purpose.Perfectly delivered! Mannose‐modified multi‐walled carbon nanotubes (Man‐MWCNTs) could efficiently deliver a large amount of antigen to bone marrow derived dendritic cells (DCs) through ligand/receptor interactions of mannose, inducing enhanced BMDCs maturation and cytokines secretion.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150607/1/open201900126-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150607/2/open201900126.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150607/3/open201900126_am.pd

    Population genetics, diversity and forensic characteristics of Tai–Kadai-speaking Bouyei revealed by insertion/deletions markers

    Get PDF
    Abstract(#br)China, inhabited by over 1.3 billion people and known for its genetic, cultural and linguistic diversity, is considered to be indispensable for understanding the association between language families and genetic diversity. In order to get a better understanding of the genetic diversity and forensic characteristics of Tai–Kadai-speaking populations in Southwest China, we genotyped 30 insertion/deletion (InDel) markers and amelogenin in 205 individuals from Tai–Kadai-speaking Bouyei people using the Qiagen Investigator DIPplex amplification kit. We carried out a comprehensive population genetic relationship investigation among 14,303 individuals from 84 worldwide populations based on allele frequency correlation and 4907 genotypes of 30 InDels from 36 populations distributed in..

    Pro-angiogenic Role of Danqi Pill Through Activating Fatty Acids Oxidation Pathway Against Coronary Artery Disease

    Get PDF
    Coronary artery disease (CAD) is one of the leading causes of deaths worldwide. Energy metabolism disorders, including a reduction in fatty acids oxidation and upregulation of glycolysis pathway, are involved in the process of CAD. Therapeutic angiogenesis has become a promising treatment for CAD. Traditional Chinese medicines, such as Danqi Pill (DQP), have been proven to be effective in treating CAD in China for many years. However, the pro-angiogenic effects of DQP based on fatty acids oxidation are still unknown and the mechanism is worthy of investigation. In this study, left anterior descending (LAD) coronary artery was ligated to induce the CAD models in vivo, and cardiac functions were examined using echocardiography. Human umbilical vein endothelial cells (HUVEC) were subjected to H2O2-induced oxidative stress in vitro. The effects of DQP on CAD rat models and in vitro HUVEC were detected. Our results showed that DQP had cardio-protective effects in rat model. The intensity of capillaries in the marginal area of infarction of the rat heart was increased remarkably in DQP group, and the expression of PPARα and VEGF-2 were increased. The key enzymes involved in the transportation and intake of fatty acids, including CPT1A and CD36, both increased. In H2O2-induced endothelial cells injury models, DQP also showed protective roles and promoted capillary-like tube formation. DQP up-regulated key enzymes in fatty acids oxidation in H2O2-treated HUVEC. In addition, inhibition of CPT1A compromised the pro-angiogenic effects of DQP. In conclusion, fatty acids oxidation axis PPARα-CD36-CPT1A was involved in the pro-angiogenic roles of DQP against CAD. Cardiac CPT1A may serve as a target in therapeutic angiogenesis in clinics

    Genomic Insights Into the Admixture History of Mongolic- and Tungusic-Speaking Populations From Southwestern East Asia

    Get PDF
    As a major part of the modern Trans-Eurasian or Altaic language family, most of the Mongolic and Tungusic languages were mainly spoken in northern China, Mongolia, and southern Siberia, but some were also found in southern China. Previous genetic surveys only focused on the dissection of genetic structure of northern Altaic-speaking populations; however, the ancestral origin and genomic diversification of Mongolic and Tungusic–speaking populations from southwestern East Asia remain poorly understood because of the paucity of high-density sampling and genome-wide data. Here, we generated genome-wide data at nearly 700,000 single-nucleotide polymorphisms (SNPs) in 26 Mongolians and 55 Manchus collected from Guizhou province in southwestern China. We applied principal component analysis (PCA), ADMIXTURE, f statistics, qpWave/qpAdm analysis, qpGraph, TreeMix, Fst, and ALDER to infer the fine-scale population genetic structure and admixture history. We found significant genetic differentiation between northern and southern Mongolic and Tungusic speakers, as one specific genetic cline of Manchu and Mongolian was identified in Guizhou province. Further results from ADMIXTURE and f statistics showed that the studied Guizhou Mongolians and Manchus had a strong genetic affinity with southern East Asians, especially for inland southern East Asians. The qpAdm-based estimates of ancestry admixture proportion demonstrated that Guizhou Mongolians and Manchus people could be modeled as the admixtures of one northern ancestry related to northern Tungusic/Mongolic speakers or Yellow River farmers and one southern ancestry associated with Austronesian, Tai-Kadai, and Austroasiatic speakers. The qpGraph-based phylogeny and neighbor-joining tree further confirmed that Guizhou Manchus and Mongolians derived approximately half of the ancestry from their northern ancestors and the other half from southern Indigenous East Asians. The estimated admixture time ranged from 600 to 1,000 years ago, which further confirmed the admixture events were mediated via the Mongolians Empire expansion during the formation of the Yuan dynasty

    Scaling-up Strategy as an Appropriate Approach for Sustainable New Town Development? Lessons from Wujin, Changzhou, China

    Get PDF
    China has achieved rapid urbanization and unprecedented economic booming over the past three decades. Numerous cities and towns dreamed of cloning the miracles of Shenzhen and Pudong, Shanghai, in terms of their international development. However, inappropriate development strategies have meant that the majority of fast expanding urban suburbs or newly developed towns suffer a high ratio of vacant dwellings in real estate markets and a massive loss of farmland. The frequent exposure of these empty cities to mass media or the public has urged urban governments to impose fiscal austerity. These unexpected and negative consequences of urban development have explicit conflicts with sustainability. This paper aims to provide a political economy view of these unsustainable outcomes of new development. To achieve this, the processes and agendas of new city or town planning in Wujin District, Changzhou City, are analyzed and evaluated from the perspective of scale theory. Extensive interviews conducted with local politicians at different levels, planners, real estate agents and local residents facilitate the interpretation of these processes and agendas. It is argued that the legends of Shenzhen and Pudong, Shanghai originate from a modified neoliberal capitalism intervention at the right time and place, with which other peer cities are not comparable. It is concluded that the scaling-up strategy is not appropriate for the local new town development of Wujin, which has led to unsustainable outcomes—empty cities and towns—and created important lessons for the sustainable development of Chinese cities
    • 

    corecore