8 research outputs found

    Binge-Like Sucrose Self-Administration Experience Inhibits Cocaine and Sucrose Seeking Behavior in Offspring

    No full text
    Recent studies show that emotional and environmental stimuli promote epigenetic inheritance and influence behavioral development in the subsequent generations. Caloric mal- and under-nutrition has been shown to cause metabolic disturbances in the subsequent generation, but the incentive properties of paternal binge-like eating in offspring is still unknown. Here we show that paternal sucrose self-administration experience could induce inter-generational decrease in both sucrose and cocaine-seeking behavior, and sucrose responding in F1 rats, but not F2, correlated with the performance of F0 rats in sucrose self-administration. Higher anxiety level and decreased cocaine sensitivity were observed in Sucrose F1 compared with Control F1, possibly contributing to the desensitization phenotype in cocaine and sucrose self-administration. Our study revealed that paternal binge-like sucrose consumption causes decrease in reward seeking and induces anxiety-like behavior in the F1 offspring

    Paternal cocaine-seeking motivation defines offspring’s vulnerability to addiction by down-regulating GABAergic GABRG3 in the ventral tegmental area

    No full text
    Abstract Epidemiological investigations indicate that parental drug abuse experiences significantly influenced the addiction vulnerability of offspring. Studies using animal models have shown that paternal cocaine use and highly motivated drug-seeking behavior are important determinants of offspring addiction susceptibility. However, the key molecules contributing to offspring addiction susceptibility are currently unclear. The motivation for cocaine-seeking behavior in offspring of male rats was compared between those whose fathers self-administered cocaine (SA) and those who were yoked with them and received non-contingent cocaine administrations (Yoke). We found that paternal experience with cocaine-seeking behavior, but not direct cocaine exposure, could lead to increased lever-pressing behavior in male F1 offspring. This effect was observed without significant changes to the dose-response relationship. The transcriptomes of ventral tegmental area (VTA) in offspring were analyzed under both naive state and after self-administration training. Specific transcriptomic changes in response to paternal cocaine-seeking experiences were found, which mainly affected biological processes such as synaptic connections and receptor signaling pathways. Through joint analysis of these candidate genes and parental drug-seeking motivation scores, we found that gamma-aminobutyric acid receptor subunit gamma-3 (Gabrg3) was in the hub position of the drug-seeking motivation-related module network and highly correlated with parental drug-seeking motivation scores. The downregulation of Gabrg3 expression, caused by paternal motivational cocaine-seeking, mainly occurred in GABAergic neurons in the VTA. Furthermore, down-regulating GABAergic Gabrg3 in VTA resulted in an increase in cocaine-seeking behavior in the Yoke F1 group. This down-regulation also reduced transcriptome differences between the Yoke and SA groups, affecting processes related to synaptic formation and neurotransmitter transmission. Taken together, we propose that paternal cocaine-seeking behavior, rather than direct drug exposure, significantly influences offspring addiction susceptibility through the downregulation of Gabrg3 in GABAergic neurons of the VTA, highlighting the importance of understanding specific molecular pathways in the intergenerational inheritance of addiction vulnerability

    Transcriptomic effects of paternal cocaine-seeking on the reward circuitry of male offspring

    No full text
    Abstract It has been previously established that paternal development of a strong incentive motivation for cocaine can predispose offspring to develop high cocaine-seeking behavior, as opposed to sole exposure to the drug that results in drug resistance in offspring. However, the adaptive changes of the reward circuitry have not been fully elucidated. To infer the key nuclei and possible hub genes that determine susceptibility to addiction in offspring, rats were randomly assigned to three groups, cocaine self-administration (CSA), yoked administration (Yoke), and saline self-administration (SSA), and used to generate F1. We conducted a comprehensive transcriptomic analysis of the male F1 offspring across seven relevant brain regions, both under drug-naĂŻve conditions and after cocaine self-administration. Pairwise differentially expressed gene analysis revealed that the orbitofrontal cortex (OFC) exhibited more pronounced transcriptomic changes in response to cocaine exposure, while the dorsal hippocampus (dHip), dorsal striatum (dStr), and ventral tegmental area (VTA) exhibited changes that were more closely associated with the paternal voluntary cocaine-seeking behavior. Consistently, these nuclei showed decreased dopamine levels, elevated neuronal activation, and elevated between-nuclei correlations, indicating dopamine-centered rewiring of the midbrain circuit in the CSA offspring. To determine if possible regulatory cascades exist that drive the expression changes, we constructed co-expression networks induced by paternal drug addiction and identified three key clusters, primarily driven by transcriptional factors such as MYT1L, POU3F4, and NEUROD6, leading to changes of genes regulating axonogenesis, synapse organization, and membrane potential, respectively. Collectively, our data highlight vulnerable neurocircuitry and novel regulatory candidates with therapeutic potential for disrupting the transgenerational inheritance of vulnerability to cocaine addiction
    corecore