226 research outputs found

    Characterization and Comparative Analysis of Small RNAs in Three Small RNA Libraries of the Brown Planthopper (Nilaparvata lugens)

    Get PDF
    BACKGROUND: The brown planthopper (BPH), Nilaparvata lugens (Stå;l), which belongs to Homopteran, Delphacidae, is one of the most serious and destructive pests of rice. Feeding BPH with homologous dsRNA in vitro can lead to the death of BPH, which gives a valuable clue to the prevention and control of this pest, however, we know little about its small RNA world. METHODOLOGY/PRINCIPAL FINDINGS: Small RNA libraries for three developmental stages of BPH (CX-male adult, CC-female adult, CY-last instar female nymph) had been constructed and sequenced. It revealed a prolific small RNA world of BPH. We obtained a final list of 452 (CX), 430 (CC), and 381 (CY) conserved microRNAs (miRNAs), respectively, as well as a total of 71 new miRNAs in the three libraries. All the miRNAs had their own expression profiles in the three libraries. The phylogenic evolution of the miRNA families in BPH was consistent with other species. The new miRNA sequences demonstrated some base biases. CONCLUSION: Our study discovered a large number of small RNAs through deep sequencing of three small RNA libraries of BPH. Many animal-conserved miRNA families as well as some novel miRNAs have been detected in our libraries. This is the first achievement to discover the small RNA world of BPH. A lot of new valuable information about BPH small RNAs has been revealed which was helpful for studying insect molecular biology and insect resistant research

    Modeling Heterogeneous Relations across Multiple Modes for Potential Crowd Flow Prediction

    Full text link
    Potential crowd flow prediction for new planned transportation sites is a fundamental task for urban planners and administrators. Intuitively, the potential crowd flow of the new coming site can be implied by exploring the nearby sites. However, the transportation modes of nearby sites (e.g. bus stations, bicycle stations) might be different from the target site (e.g. subway station), which results in severe data scarcity issues. To this end, we propose a data driven approach, named MOHER, to predict the potential crowd flow in a certain mode for a new planned site. Specifically, we first identify the neighbor regions of the target site by examining the geographical proximity as well as the urban function similarity. Then, to aggregate these heterogeneous relations, we devise a cross-mode relational GCN, a novel relation-specific transformation model, which can learn not only the correlations but also the differences between different transportation modes. Afterward, we design an aggregator for inductive potential flow representation. Finally, an LTSM module is used for sequential flow prediction. Extensive experiments on real-world data sets demonstrate the superiority of the MOHER framework compared with the state-of-the-art algorithms.Comment: Accepted by the 35th AAAI Conference on Artificial Intelligence (AAAI 2021

    Integrated network analysis and metabolomics reveal the molecular mechanism of Yinchen Sini decoction in CCl4-induced acute liver injury

    Get PDF
    Objective: Yinchen Sini decoction (YCSND), a traditional Chinese medicine (TCM) formula, plays a crucial role in the treatment of liver disease. However, the bioactive constituents and pharmacological mechanisms of action remain unclear. The present study aimed to reveal the molecular mechanism of YCSND in the treatment of acute liver injury (ALI) using integrated network analysis and metabolomics.Methods: Ultra-high-performance liquid chromatography coupled with Q-Exactive focus mass spectrum (UHPLC-QE-MS) was utilized to identify metabolites in YCSND, and high-performance liquid chromatography (HPLC) was applied to evaluate the quality of four botanical drugs in YCSND. Cell damage and ALI models in mice were established using CCl4. 1H-NMR metabolomics approach, along with histopathological observation using hematoxylin and eosin (H&E), biochemical measurements, and reverse transcription quantitative real-time PCR (RT-qPCR), was applied to evaluate the effect of YCSND on CCl4- induced ALI. Network analysis was conducted to predict the potential targets of YCSND in ALI.Result: Our results showed that 89 metabolites in YCSND were identified using UHPLC-QE-MS. YCSND protected against ALI by reducing the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) contents and increasing those of superoxide dismutase (SOD), and glutathione (GSH) both in vivo and in vitro. The 1H-NMRmetabolic pattern revealed that YCSND reversed CCl4-induced metabolic abnormalities in the liver. Additionally, the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis identified five pathways related to liver injury, including the PI3K-AKT, MAPK, HIF-1, apoptosis, and TNF signaling pathways. Moreover, RT-qPCR showed YCSND regulated the inflammatory response (Tlr4, Il6, Tnfα, Nfκb1, Ptgs2, and Mmp9) and apoptosis (Bcl2, Caspase3, Bax, and Mapk3), and inhibited PI3K-AKT signaling pathway (Pi3k and Akt1). Combined network analysis and metabolomics showed a link between the key targets (Tlr4, Ptgs2, and Mmp9) and vital metabolites (choline, xanthine, lactate, and 3-hydroxybutyric acid) of YCSND in ALI.Conclusion: Overall, the results contribute to the understanding of the therapeutic effects of YCSND on ALI, and indicate that the integrated network analysis and metabolomics could be a powerful strategy to reveal the pharmacological effects of TCM

    A Novel α-Galactosidase A Splicing Mutation Predisposes to Fabry Disease

    Get PDF
    Fabry disease (FD) is a rare X-linked α-galactosidase A (GLA) deficiency, resulting in progressive lysosomal accumulation of globotriaosylceramide (Gb3) in a variety of cell types. Here, we report a novel splicing mutation (c.801 + 1G > A) that results in alternative splicing in GLA of a FD patient with variable phenotypic presentations of renal involvement. Sequencing of the RT-PCR products from the patient’s blood sample reveals a 36-nucleotide (nt) insertion exists at the junction between exons 5 and 6 of the GLA cDNA. Splicing assay indicates that the mutated minigene produces an alternatively spliced transcript which causes a frameshift resulting in an early termination of protein expression. Immunofluorescence shows puncta in cytoplasm for mutated GLA whereas uniform staining small dots evenly distributed inside cytoplasm for wild type GLA in transfected HeLa cells. The increased senescence and decreased GLA enzyme activity suggest that the abnormalities might be due to the altered localization which further might result from the lack of the C-terminal end of GLA. Our study reveals the pathogenesis of splicing mutation c.801 + 1G > A to FD and provides scientific foundation for accurate diagnosis and precise medical intervention for FD

    Partitioning the contributions of glacier melt and precipitation to the 1971–2010 runoff increases in a headwater basin of the Tarim River

    Get PDF
    Glacier retreat and runoff increases in the last few decades characterize conditions in the Kumalak River Basin, which is a headwater basin of the Tarim River with a catchment area of 12,800 km2. To address the scientific question of whether, and to what extent, the observed runoff increase can be attributed to enhanced glacier melt and/or increased precipitation, a glacier evolution scheme and precipitation-runoff model are developed. Using the glacio-hydrological model, we find that both glacier cover area and glacier mass in the study area have decreased from 1971 to 2010. On average, the contribution to total runoff from rainfall, glacier melt and snowmelt are 60.6%, 28.2% and 11.2%, respectively. Despite covering only 21.3% of the basin area, glacier areas contributed 43.3% (including rainfall, snowmelt and glacier melt) to the total runoff from our model estimates. Furthermore, as primary causes of increased runoff in response to the warmer and wetter climate over the period 1971–2010, contribution from increases in rainfall and glacier melt are 56.7% and 50.6%, respectively. In comparison to rainfall and glacier melt, snowmelt has a minor influence on runoff increase, accounting for −7.3%. The research has important implications for water resources development in this arid region and for some similar river basins in which glacial melt forms an important part of the hydrological cycle

    Continuous synthesis of drug nanocrystals by solid hollow fiber cooling crystallization.

    Get PDF
    Size reduction of drug with poor water solubility to nanoscale is an effective way to help improve the efficacy of drug delivery to the human body. A solid hollow fiber cooling crystallization technique has been adopted to continuously produce griseofulvin drug nanoparticles under modest conditions with accurate controllability. In the solid hollow fiber cooling crystallization device, drug solution flowed through the bores of solid hollow fibers while the cooling liquid was circulated counter-currently in the shell side of the device to cool down the drug solution in the tube side. Due to intense heat exchange between the cooling liquid and the drug solution through the thin fiber walls, the temperature of drug solution decreased rapidly so that drug nanoparticles were precipitated out from the solution by sudden reduction of solubility. Through variation of the experimental conditions and parameters, the mean size of the produced nanoparticles was regulated and controlled. The nanoparticles were dispersed uniformly, the chemical structure and bonds of prepared nanoparticles was the same with as-received griseofulvin. Both raw material and NPs the polymorph(s) present form I, the melting point was 220°C. Drug dissolution testing was also executed to verify that nanocrystals have a higher dissolution profile

    Continuous synthesis of drug nanocrystals by solid hollow fiber cooling crystallization

    Get PDF
    Abstract(#br)Size reduction of drug with poor water solubility to nanoscale is an effective way to help improve the efficacy of drug delivery to the human body. A solid hollow fiber cooling crystallization technique has been adopted to continuously produce griseofulvin drug nanoparticles under modest conditions with accurate controllability. In the solid hollow fiber cooling crystallization device, drug solution flowed through the bores of solid hollow fibers while the cooling liquid was circulated counter-currently in the shell side of the device to cool down the drug solution in the tube side. Due to intense heat exchange between the cooling liquid and the drug solution through the thin fiber walls, the temperature of drug solution decreased rapidly so that drug nanoparticles were precipitated out from the solution by sudden reduction of solubility. Through variation of the experimental conditions and parameters, the mean size of the produced nanoparticles was regulated and controlled. The nanoparticles were dispersed uniformly, the chemical structure and bonds of prepared nanoparticles was the same with as-received griseofulvin. Both raw material and NPs the polymorph(s) present form I, the melting point was 220°C. Drug dissolution testing was also executed to verify that nanocrystals have a higher dissolution profile
    • …
    corecore