72 research outputs found

    Microbial source tracking identifies sources of contamination for a river flowing into the Yellow Sea

    Get PDF
    The excessive input of nutrients into rivers can lead to contamination and eutrophication, which poses a threat to the health of aquatic ecosystems. It is crucial to identify the sources of contaminants to develop effective management plans for eutrophication. However, traditional methods for identifying pollution sources have been insufficient, making it difficult to manage river health effectively. High-throughput sequencing offers a novel method for microbial community source tracking, which can help identify dominant pollution sources in rivers. The Wanggang River was selected for study, as it has suffered accelerated eutrophication due to considerable nutrient input from riparian pollutants. The present study identified the dominant microbial communities in the Wanggang River basin, including Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, and Firmicutes. The Source Tracker machine-learning classification system was used to create source-specific microbial community fingerprints to determine the primary sources of contaminants in the basin, with agricultural fertilizer being identified as the main pollutant source. By identifying the microbial communities of potential pollution sources, the study determined the contributing pollutant sources in several major sections of the Wanggang River, including industry, urban land, pond culture, and livestock land. These findings can be used to improve the identification of pollution sources in specific environments and develop effective pollution management plans for polluted river water

    Metal ions steer the duality in microbial community recovery from nitrogen enrichment by shaping functional groups

    Get PDF
    Abstract Atmospheric nitrogen (N) deposition has been substantially reduced due to declines in the reactive N emission in major regions of the world. Nevertheless, the impact of reduced N deposition on soil microbial communities and the mechanisms by which they are regulated remain largely unknown. Here, we examined the effects of N addition and cessation of N addition on plant and soil microbial communities through a 17‐year field experiment in a temperate grassland. We found that extreme N input did not irreversibly disrupt the ecosystem, but ceasing high levels of N addition led to greater resilience in bacterial and fungal communities. Fungi exhibited diminished resilience compared to bacteria due to their heightened reliance on changes in plant communities. Neither bacterial nor fungal diversity fully recovered to their original states. Their sensitivity and resilience were mainly steered by toxic metal ions and soil pH differentially regulating on functional taxa. Specifically, beneficial symbiotic microbes such as N‐fixing bacteria and arbuscular mycorrhizal fungi experienced detrimental effects from toxic metal ions and lower pH, hindering their recovery. The bacterial functional groups involved in carbon decomposition, and ericoid mycorrhizal and saprotrophic fungi were positively influenced by soil metals, and demonstrated gradual recovery. These findings could advance our mechanistic understanding of microbial community dynamics under ongoing global changes, thereby informing management strategies to mitigate the adverse effects of N enrichment on soil function

    Impact of HIV-1 genetic diversity on disease progression: a prospective cohort study in Guangxi

    Get PDF
    The high proportion of AIDS cases and mortality rates in Guangxi underscores the urgency to investigate the influence of HIV-1 genetic diversity on disease progression in this region. Newly diagnosed HIV-1 patients were enrolled from January 2016 to December 2021, and the follow-up work and detection of CD4+T lymphocytes were carried out every six months until December 2022. Multivariate logistic regression was used to analyze the factors affecting pre-treatment CD4+T lymphocyte counts, while local weighted regression models (LOESS) and generalized estimating equation models (GEE) were conducted to assess factors influencing CD4+T Lymphocyte Recovery. Cox regression analysis was utilized to examine the impact of subtypes on survival risk. Additionally, HIV-1 env sequences were utilized for predicting CXCR4 and CCR5 receptors. The study encompassed 1867 individuals with pol sequences and 281 with env sequences. Our findings indicate that age over 30, divorced/widowed, peasant, heterosexual infection, CRF01_AE, long-term infection, and Pre-treatment Viral load >10000 copies/ml were factors associated with higher risk for pre-treatment CD4+T lymphocyte decline. Specifically, male gender, age over 30, heterosexual infection (HETs), long-term infection, CRF01_AE, and Pre-treatment CD4 T cell counts below 350/”L were identified as risk factors impeding CD4+T lymphocyte recovery. Pre-treatment CD4+T lymphocyte counts and recovery in individuals infected with CRF01_AE were lower compared to CRF07_BC and CRF55_01B. Additionally, CRF01_AE and CRF08_BC subtypes exhibited higher mortality rates than CRF07_BC, CRF55_01B, and other subtypes. Notably, CRF01_AE demonstrated the highest percentage of CXCR4 affinity ratios. This research unveils the intricate influence of HIV-1 gene diversity on CD4+T lymphocyte dynamics and clinical outcomes. It highlights the multifaceted nature of HIV infection in Guangxi, providing novel insights into subtype-specific disease progression among HIV-infected individuals in this region

    Genome-wide association reveals three SNPs associated with sporadic amyotrophic lateral sclerosis through a two-locus analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyotrophic lateral sclerosis (ALS) is a fatal, degenerative neuromuscular disease characterized by a progressive loss of voluntary motor activity. About 95% of ALS patients are in "sporadic form"-meaning their disease is not associated with a family history of the disease. To date, the genetic factors of the sporadic form of ALS are poorly understood.</p> <p>Methods</p> <p>We proposed a two-stage approach based on seventeen biological plausible models to search for two-locus combinations that have significant joint effects to the disease in a genome-wide association study (GWAS). We used a two-stage strategy to reduce the computational burden associated with performing an exhaustive two-locus search across the genome. In the first stage, all SNPs were screened using a single-marker test. In the second stage, all pairs made from the 1000 SNPs with the lowest p-values from the first stage were evaluated under each of the 17 two-locus models.</p> <p>Results</p> <p>we performed the two-stage approach on a GWAS data set of sporadic ALS from the SNP Database at the NINDS Human Genetics Resource Center DNA and Cell Line Repository <url>http://ccr.coriell.org/ninds/</url>. Our two-locus analysis showed that two two-locus combinations--rs4363506 (SNP1) and rs3733242 (SNP2), and rs4363506 and rs16984239 (SNP3) -- were significantly associated with sporadic ALS. After adjusting for multiple tests and multiple models, the combination of SNP1 and SNP2 had a p-value of 0.032 under the Dom∩Dom epistatic model; SNP1 and SNP3 had a p-value of 0.042 under the Dom × Dom multiplicative model.</p> <p>Conclusion</p> <p>The proposed two-stage analytical method can be used to search for joint effects of genes in GWAS. The two-stage strategy decreased the computational time and the multiple testing burdens associated with GWAS. We have also observed that the loci identified by our two-stage strategy can not be detected by single-locus tests.</p

    Design of functions in Smart TV : A survey study of user acceptance on Smart TV functions

    No full text
    This paper is defined as a qualitative study and mainly uses a survey, interview and previous reports and papers as methodology. We research which functions in the Smart TV that are widely used and what functions of the Smart TV do people need, and if people accept the design of the functions in the Smart TV.Through the investigation we got three conclusions: firstly, we have discovered the top four popular functions of Smart TV based on the questionnaire, secondly, the precautions the developers should pay attention to when they design the product, lastly we have said that people do not accept these intelligent functions in the Smart TV, and after the study we give the future direction andsuggestion for how to make well designed functions for the Smart TV
    • 

    corecore