2,527 research outputs found

    Effects of Geometrical Symmetry on the Vortex Nucleation and Penetration in Mesoscopic Superconductors

    Full text link
    We investigate how the geometrical symmetry affects the penetration and arrangement of vortices in mesoscopic superconductors using self-consistent Bogoliubov-de Gennes equations. We find that the entrance of the vortex happens when the current density at the hot spots reaches the depairing current density. Through determining the spatial distribution of hot spots, the geometrical symmetry of the superconducting sample influences the nucleation and entrance of vortices. Our results propose one possible experimental approach to control and manipulate the quantum states of mesoscopic superconductors with their topological geometries, and they can be easily generalized to the confined superfluids and Bose-Einstein condensates

    PP-114 Correlation factors involved in therapeutic efficacy of adefovir dipivoxil for chronic hepatitis B with YMDD mutation

    Get PDF

    Ground state properties of one-dimensional Bose-Fermi mixtures

    Full text link
    Bose-Fermi mixtures in one dimension are studied in detail on the basis of an exact solution. Corresponding to three possible choices of the referecce state in the quantum inverse scattering method, three sets of Bethe-ansatz equations are derived explicitly. The features of the ground state and low-lying excitations are investigated. The ground state phase diagram caused by the external field and chemical potential is obtained

    (6aS,11aR,11cS)-8-Sulfanylidene-2,3,5,6,6a,7,11,11a,11b,11c-decahydro-3a,7a-diaza-1H,4H-benzo[de]anthracen-3a-ium chloride hemihydrate

    Get PDF
    The title compound, C15H23N2S+·Cl−·0.5H2O, was prepared from (6aS,11aR,11cS)-2,3,5,6,6a,7,11,11a,11b,11c-deca­hydro-3a,7a-diaza-1H,4H-benzo[de]anthracene-8-one (sophocarpine) and Lawesson’s reagent. The thione-substituted ring is in an envelope conformation and the three other six-membered rings are in chair conformations. In the crystal, anions and cations are linked by N—H⋯Cl and weak C—H⋯Cl hydrogen bonds. One 0.5-occupancy solvent water mol­ecule lies on a twofold rotation axis and another 0.25-occupancy solvent water mol­ecule is in a general position. The H atoms of these water mol­ecules were not located or included in the refinement

    Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles.

    Get PDF
    A comprehensive review on the five levels of hierarchical structures of silk materials and the correlation with macroscopic properties/performance of the silk materials, that is, the toughness, strain-stiffening, etc., is presented. It follows that the crystalline binding force turns out to be very important in the stabilization of silk materials, while the β-crystallite networks or nanofibrils and the interactions among helical nanofibrils are two of the most essential structural elements, which to a large extent determine the macroscopic performance of various forms of silk materials. In this context, the characteristic structural factors such as the orientation, size, and density of β-crystallites are very crucial. It is revealed that the formation of these structural elements is mainly controlled by the intermolecular nucleation of β-crystallites. Consequently, the rational design and reconstruction of silk materials can be implemented by controlling the molecular nucleation via applying sheering force and seeding (i.e., with carbon nanotubes). In general, the knowledge of the correlation between hierarchical structures and performance provides an understanding of the structural reasons behind the fascinating behaviors of silk materials

    Maps of cropping patterns in China during 2015–2021

    Get PDF
    Multiple cropping is a widespread approach for intensifying crop production through rotations of diverse crops. Maps of cropping intensity with crop descriptions are important for supporting sustainable agricultural management. As the most populated country, China ranked first in global cereal production and the percentages of multiple-cropped land are twice of the global average. However, there are no reliable updated national-scale maps of cropping patterns in China. Here we present the first recent annual 500-m MODIS-based national maps of multiple cropping systems in China using phenologybased mapping algorithms with pixel purity-based thresholds, which provide information on cropping intensity with descriptions of three staple crops (maize, paddy rice, and wheat). The produced cropping patterns maps achieved an overall accuracy of 89% based on ground truth data, and a good agreement with the statistical data (R2 ≥ 0.89). The China Cropping Pattern maps (ChinaCP) are available for public download online. Cropping patterns maps in China and other countries with finer resolutions can be produced based on Sentinel-2 Multispectral Instrument (MSI) images using the shared code
    corecore