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Maps of cropping patterns in China 
during 2015–2021
Bingwen Qiu1 ✉, Xiang Hu1, Chongcheng Chen1, Zhenghong Tang2, Peng Yang3, Xiaolin Zhu4, 
Chao Yan1 & Zeyu Jian1

Multiple cropping is a widespread approach for intensifying crop production through rotations of diverse 
crops. Maps of cropping intensity with crop descriptions are important for supporting sustainable 
agricultural management. As the most populated country, China ranked first in global cereal production 
and the percentages of multiple-cropped land are twice of the global average. However, there are no 
reliable updated national-scale maps of cropping patterns in China. Here we present the first recent 
annual 500-m MODIS-based national maps of multiple cropping systems in China using phenology-
based mapping algorithms with pixel purity-based thresholds, which provide information on cropping 
intensity with descriptions of three staple crops (maize, paddy rice, and wheat). The produced cropping 
patterns maps achieved an overall accuracy of 89% based on ground truth data, and a good agreement 
with the statistical data (R2 ≥ 0.89). The China Cropping Pattern maps (ChinaCP) are available for public 
download online. Cropping patterns maps in China and other countries with finer resolutions can be 
produced based on Sentinel-2 Multispectral Instrument (MSI) images using the shared code.

Background & Summary
Global food security is the most important issue in human society, especially in the most populated coun-
try, China1. Agricultural intensification through multiple cropping with diverse crop species can significantly 
increase crop production as well as reduce the associated environmental consequences2,3. Around 12% of global 
croplands experience multiple cropping and among them, 34% of rice lands are under multiple cropping sys-
tems2. China feeds about 20% of the world’s population with only 7% of the world’s farmland1. Around one-third 
of croplands are cultivated by multiple crops in China4,5, which is twice of the global average2. China ranked first 
in global cereal production6. Paddy rice, maize, and wheat are the most important staple cereal crops in China. 
On a global scale, these three staple crops accounted for 79% of the total harvested cereal areas6. In China, 
the three staple crops contributed to around 97% of national cereal areas in 2020 (www.stats.gov.cn/english/). 
Developing a spatially explicit multiple cropping dataset with information on crop types is important for ensur-
ing agricultural sustainability2.

Remote sensing has long been applied to produce maps of cropping intensity and crop types in recent dec-
ades7,8. However, national-scale agricultural mapping remains challenging due to a lack of sufficient training 
samples required for mapping algorithms continuously over large areas9. The phenology-based approaches have 
been developed for crop mapping by analyzing the crop life cycle, relieving the reliance on training samples10. 
Phenology-based algorithms were commonly developed based on the temporal profiles of Vegetation Indices 
(VI), which reflected unique phenology for each specific crop11,12. Nevertheless, the phenology-based algo-
rithms over large spatial domains and multiple years needs to deliver the challenges of intra-class variability and 
inter-class similarity in spectral and temporal characteristics13. Several strategies have been proposed to cope 
with these challenges, such as automatically detecting the key phenological stages and unique cropping practices 
through incorporating multiple spectral indices and multi-resources data14,15. MODIS images have long been 
successfully exploited in agricultural applications due to the advantages of temporal resolutions11,16. However, 
the mixed-pixel problem of MODIS images needs to be addressed17. The precise agricultural mapping is con-
strained by the lack of images with fine-resolution and adequate revisit frequency9. There is a need to expand the 
cropping intensity mapping strategy through the incorporation of crop description2.
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Cropping systems have changed significantly in response to agricultural policies, global food prices, and 
climatic changes18. The Chinese government has implemented a series of strong policy measures to stimulate 
agricultural production, such as agricultural subsidizing and price support targeted to major food crops19. As 
a result, China has experienced dramatic changes in agricultural production structure in recent decades20. 
The historical high maize stock in 2015 has become one of the biggest agricultural problems for recent years19. 
Therefore, the Chinese government accelerated agricultural supply-side reform to optimize the agricultural 
structure1. However, there is a lack of useful references on how the agricultural supply-side reform influenced 
agriculture structure19. There is a lack of reliable updated nation-scale maps with detailed descriptions on crop-
ping intensity and crops rotations in China in recent year21. This study aimed to fill this scientific data gap by 
providing annual national maps on Cropping patterns in China during 2015–2021 based on MODIS images 
using phenology-based mapping algorithms. Pixel purity-based thresholds were proposed and applied in the 
decision rules in order to cope with the mixed pixel problem of MODIS images.

Methods
Study area.  There is a long history of diversified cropping patterns due to the climatic and topographic com-
plexity in China4. Cropping intensity increases from north to south, and multiple cropping dominates in regions 
south of 400N4. For example, multiple cropping systems of double rice and winter wheat plus maize are popular 
in the Middle-lower Yangtze river plain and the Huang-Huai-Hai plain, respectively (Fig. 1)22. Three staple crops, 
maize, paddy rice, and wheat, are widely distributed across the country (Figure S1). These three major crops 
contributed to more than half (57.08%) of the total sown area in China in 2020 (http://www.stats.gov.cn/english/).

MODIS images and pre-processing.  We used the 500 m 8-day composite Moderate Resolution Imaging 
Spectroradiometer (MODIS) surface reflectance products (MOD09A1) from 2015 to 2021. Three spectral indices 
were calculated: the 2-band Enhanced Vegetation Index (EVI2)23, LSWI16, and Normalized Multi-band Drought 
Index (NMDI)24 (Fig. 2). The functions of EVI2, LSWI, and NMDI are provided in Eqs. 1–3 as follows.

EVI2 2 5 ( ) / ( 2 4 1) (1)NIR NIRRed Redρ ρ ρ ρ= . × − + . × +
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where, ρNIR, ρRed, ρSWIR6 and ρSWIR7 represented the surface reflectance values from the red (620–670 nm), 
Near-infrared (841–875 nm), short wave infrared band centered at 1640 nm (1628–1652 nm) and 2130 nm 
(2105–2155 nm), respectively.

Fig. 1  The distribution map of cropping patterns in 2021, 9 agricultural regions and validation sites in China. 
Notes: A to I represented nine agricultural regions in China. (A) Middle-lower Yangtze River Plain; (B) Huang-
Huai-Hai plain; (C) Northeast China; (D) Inner Mongolia and along the Great Wall; (E) Loess plateau; (F) 
Southwest China; (G) Southern China; (H) Gansu-Xinjiang region; (I) Qinghai-Tibet region.
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For each spectral index (EVI2, LSWI, and NMDI), a daily continuous time series was developed based on the 
cloud-free observations using the Whittaker Smoother (WS)25. The WS smoother performed well in multiple 
cropping regions and therefore was applied here26.

Validation data and other datasets.  The validation data in this study included the ground truth reference 
data and agricultural census data. The ground truth reference data were collected in major agricultural regions 
with GPS receivers and digital cameras during the study period (2015–2021) (Fig. 1, Table S1). For each sampling 
site, the geographic location and crop types were recorded. The reliability of ground survey data was improved 
through visual confirmation based on high-resolution images in Google Earth. Some reference sites with small 
field sizes were removed to considering the mixed-pixel problems of MODIS images. Finally, we obtained a total 
of 18,379 ground samples collected during 2015–2021 (Table S1). All the ground truth reference data were used 
to validate the cropping pattern data in its corresponding year. Agricultural census data were obtained from the 
National Statistical Bureau of China (NSBC) (http://www.stats.gov.cn/english/), which was collected through 
sampling statistics. The crop calendar data from agro-meteorological stations recorded the sowing, seedling, till-
ering, heading, and harvesting dates of winter wheat (210 sites) or spring wheat (90 sites). The calendar data were 
applied to establish the trend surfaces of key phenological stages of winter wheat and spring wheat, respectively. 

Fig. 2  The workflow of the methodology: Data preprocessing, deriving cropping intensity, mapping three staple 
crops and obtaining annual maps of cropping patterns in China.

https://doi.org/10.1038/s41597-022-01589-8
http://www.stats.gov.cn/english/


4Scientific Data |           (2022) 9:479  | https://doi.org/10.1038/s41597-022-01589-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

The crop calendar data were provided by the National Meteorological Information Center, China Meteorological 
Administration.

The cropland distribution data were derived from the 30 m GlobeLand30 global land cover data in 202027. The 
total accuracy of GlobeLand30 in 2020 is 85.72%, and the Kappa coefficient is 0.82 (www.globallandcover.com).  
To correspond to MODIS images, the 30 m cropland pixels from GlobeLand30 data were spatially aggregated to 
a 500 m cropland fraction map. For simplification, we classified pixel purity of MODIS pixels into three groups: 
cropland percentages of >90%, 50–90%, and <50% were labeled as pure, moderate mixed, and seriously mixed 
pixels, respectively. MODIS pixels with very small cropland fraction (i. e. <30%) were not accounted. The pure, 
moderate mixed and seriously mixed groups occupied 39%, 42%, and 19% of MODIS pixels in China, respec-
tively (Figure S2).

Overview of the cropping pattern mapping approach.  A cropping pattern is referred to as the yearly 
sequence and spatial distribution of major crops on a specific piece of cropland. Consequently, cropping pat-
tern mapping should provide information on cropping intensity as well as crop types. When multiple cropping 
is cultivated, we derived the plantation sequence of two or triple crops. For example, the cropping pattern of 
“winter wheat-maize” represents double cropping with a rotation of winter wheat plus maize. We conducted 
cropping pattern mapping processes using MATLAB software (Fig. 2). Annual cropping pattern maps were 
obtained by deriving cropping intensity as well as mapping three staple crop types (paddy rice, maize, wheat). 
These knowledge-based mapping algorithms were described in the following sections (Fig. 2).

Deriving cropping intensity.  The vegetation indices (VI) peak-based algorithms have been widely applied 
to identify cropping intensity in previous studies28. However, the VI peak-based algorithms were challenged by 
the changes of VI temporal profiles in different cropping patterns over large areas and multiple years15,17. An auto-
matic Cropping Intensity extraction method based on the Isolines of Wavelet Spectra (CIIWS) was proposed with 
considerations of complex intra-class variability of VI temporal profiles29,30. The cropping index was identified 
based on three main features, the skeleton width, maximum number of strong brightness centers, and the inter-
section of their scale intervals, derived from wavelet spectra (Fig. 2)29,30. The CIIWS cropping intensity mapping 
algorithm is capable of deriving cropping intensity automatically, which is robust to intra-class variability such as 
the phenology shift, strengthened or lessened crop growth, or crop diversity29,30. The wavelet features-based crop-
ping intensity mapping algorithm was applied in mainland China to derive annual cropping intensity from 1982 
to 2013, with an overall accuracy of 91.63%4. Therefore, this wavelet features-based cropping intensity mapping 
algorithm was applied in this study29,30.

Mapping paddy rice, maize and wheat based on phenological indicators.  Algorithms for mapping 
paddy rice, maize and wheat were developed in related references15,31,32 and applied in this study. We made critical 
improvements over these proposed crop mapping algorithms primarily in order to cope with the mixed-pixel 
problem in MODIS images15,29–32. First, pixel purity-based thresholds were applied in the decision rules (Table 1) 
to cope with the mixed pixel problem of MODIS images. The target crop from mixed pixels was expected to show 
lower values than those from pure pixels when the target crop was highlighted by larger values in our proposed 
indicators (i.e., maize). The pixel purity-based thresholds were determined based on the accuracy assessment 
with agricultural census data in 2018. The pixel purity-based thresholds were applied to a national scale and mul-
tiple years (2015–2021) without adaptations. Second, the derived maps were further improved by incorporating 
their corresponding suitable areas. Specifically, the suitable areas of single rice and spring maize were estimated 
based on topographic and climatic conditions (elevation and accumulated temperature greater than 10 degrees)33. 
Finally, we calculated the estimated areas of three staple crops from MODIS-derived products using the cropland 
fraction map. A concise description on the original mapping algorithms were provided in the following sections.

A phenology-based rice mapping algorithm was proposed through Combined Consideration of Vegetation 
phenology and Surface water variations (CCVS)31. Variation of LSWI in rice fields was smaller than that in 
other crops fields during the period from tillering to heading dates31. Therefore, the Ratio of Change amplitude 
of LSWI to 2-band Enhanced Vegetation Index 2 (RCLE) during that period was utilized as the primary met-
ric for paddy rice mapping (Fig. 2, Table 1). The CCVS rice mapping algorithm was successfully applied in 15 
provincial-level administrative units of southern China, which obtained an overall accuracy of 93–94%31. The 
CCVS rice mapping algorithm proved to be robust in terms of intra-class rice variability14.

Crop Metrics Decision rules

Rice = − −RCLE LSWI LSWI EVI EVI( )/( 2 2 )max min heading tillering θ θ> < .if LSWI and RCLE it is rice( ),min 1 2

Wheat
= − + −EVI EVI EVI EVIEVE ( 2 2 ) ( 2 2 )heading edlingse max1 min1 if EVE and it is winter wheat( EVL ) ,3 4θ θ>  > .
= − + −EVI EVI EVI EVIEVL ( 2 2 ) ( 2 2 )heading harvesting max2 min2

Maize σ= + × + + ×RCPN N(P P ) /(N N ) 100early late late early late θ> .if RCPN it is maize( ),5

Table 1.  Information on phenological metrics and decision rules for crop mapping. Notes: RCPN represented 
the Ratio of Cumulative Positive slope to Negative slope during the flowering stage. RCLE revealed the Ratio of 
Change amplitude of LSWI to EVI2 from tillering to heading dates. EVE, EVL represented the EVI2 Variations 
during the Early growth stage and the Late growth stage, respectively. The values of θ2, θ3 and θ5 were {0.42, 0.52, 
0.62}, {0.32, 0.24, 0.16}, {0.45, 0.35. 0.25} for pure, moderate, and serious mixed cropland pixels; The values of θ1 
and θ4 were 0.1 and 0.12, respectively.

https://doi.org/10.1038/s41597-022-01589-8
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An automatic Maize mapping was recently proposed through Exploring Leaf moisture variation during flow-
ering Stage (MELS)32. One unique indicator for maize mapping was the Ratio of Cumulative Positive slope to 
Negative slope (RCPN) of NMDI during the flowering stage (Fig. 2, Table 1). Maize sites were highlighted by 
consistently higher values in our proposed phenology-based indicator (RCPN) compared to other crops. A 
simple rule was applied to derive maize32 (Table 1). The capability of the MELS method was verified in mainland 
China, with an overall accuracy of 91%32.

A phenology-based winter wheat mapping algorithm through Combining variations Before and After esti-
mated Heading dates (CBAH) (Fig. 2) was exploited in this study15. The CBAH algorithm demonstrated the 
adaptability of VI temporal profiles to intra-class variability34. This mapping algorithm was exploited in North 
China plain from 2001 to 2013, with an overall accuracy of around 90%15. The CBAH algorithm was extended 
to map both winter wheat and spring wheat at the national scale. The potential distribution of winter wheat and 
spring wheat was determined based on latitudes and the accumulated temperature above 5 °C with references 
to crop calendar data from agro-meteorological stations. And then the trend surfaces of key phenological stages 
(heading dates and early growing length) were established for winter wheat and spring wheat, respectively35. 
For winter wheat, altitude and latitude were applied; and for spring wheat, the accumulated temperature above 
5 °C and latitude were applied. Two phenology-based indicators were developed by exploring the variations of 
VI during the estimated early and late growth stages (Fig. 2, Table 1). A simple decision rule could be applied to 
identify wheat by these two phenology-based indicators (Table 1).

Data Records
The China Cropping Pattern maps (ChinaCP) are provided during 2015–2021. The datasets are available at the 
figshare repository in a Geotiff format35. The dataset is provided in ESPG: 4326 (WGS_1984) spatial reference 
system. Classes in the ChinaCP map product are numbered by no more than three digits. The first digit of the 
classes represents the cropping intensity: {0: fallow; 1: single cropping; 2: double cropping; 3: triple cropping}. 
The second digit of the single cropping denotes the crop types. The latter two digits of double cropping reveal the 
rotation of these two specific crop types. The numeric values of these crop types are: {4: maize; 5: paddy rice; 6: 
wheat; 7: other crops}. Detailed information on the coding of different cropping patterns can be found in Table 2.

We also provided the Reference Data for validation (Refer), Crop Calendar data (CCalendar) and the map of 
Cropland Percentages in each MODIS pixel (CPM) based on GlobeLand30 data in 202035. Crop Calendar data 
provided the estimated heading dates and early growing length of wheat in China. The maps of Data Availability 
of ChinaCP (ChinaCP-DA) were revealed by the percentages of valid observations during the growing season 
(March to October was applied for simplification). Data availability was grouped into three categories: groups 
1, 2, and 3, indicating good, medium, and low data availability, which corresponded to >70%, 50–70%, and 
<50% of valid observations during the growing season, respectively. The datasets of reliability are also provided 
in Geotiff format (ChinaCP-DA). Mapped results in pixels with low data availability should be applied with 
caution, especially in southern China (Figure S3).

Technical Validation
Site-level comparison with ground-truth data.  We compared our maps with ground truth data at each 
survey site during the period 2015–2021. The overall accuracy (OA), user accuracy (UA), producer accuracy 
(PA), and F1-score (F1) were calculated for seven annual maps of paddy rice, maize, and wheat using the ground 
truth data from the survey sites (Table 3). We validated the maps of three staple crops for each year with all the 
ground survey datasets during its corresponding year. The OA of the three staple crops was 89%. Paddy rice, 
wheat, and maize were correctly classified with the F1 of 0.91, 0.87, and 0.91, respectively.

Code 0 14 15 16 17 245 246 255 256 277 3

Cropping pattern F SM SR SW SO R-M W-M R-R W-R OD T

Table 2.  The code and its corresponding cropping patterns in ChinaCP data. Notes: F, SM, SR, SW, SO, D-RM, 
D-WM, D-RR, D-WR, DO and T represented fallow, single maize, single rice, single wheat, single others, 
paddy rice-maize, wheat-maize, double rice, wheat-rice, other double-cropping patterns, and triple cropping, 
respectively.

MODIS estimates

Reference data

Total Rice Wheat Maize Others Producer accuracy (%) F1

Rice 6387 5929 45 56 357 92.83 0.91

Wheat 2657 78 2220 139 220 83.55 0.87

Maize 4662 205 90 4216 151 90.43 0.91

Others 4673 366 85 212 4010 85.81 0.85

User accuracy (%) 90.13 90.98 91.20 84.63

Overall accuracy (%) 89.10

Kappa 0.85

Table 3.  Accuracy assessment using ground reference sites.

https://doi.org/10.1038/s41597-022-01589-8
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Province-level comparison with agricultural census data.  The sown areas derived from cropping pat-
tern maps were compared with agricultural census data in the yearbook at the provincial level from 2015 to 2020 
(Fig. 3). The R2 between provincial sown areas of wheat from cropping pattern maps and census data was close 
to 1 (0.97–0.98) among these six years. The sown areas of paddy rice also agreed well with agricultural census 
data (R2 = 0.95–0.97) (Fig. 3). The coefficients of determination for maize were also no less than 0.89 (0.89–0.94) 
(Fig. 3). The estimated sown areas of maize in Sichuan or Yunnan provinces showed considerable underestimates 
compared with the census data (Figure S4, Table S2).

Sources of error in ChinaCP.  Errors and uncertainties in ChinaCP can be attributed to three main groups 
of sources. The first is the limited data availability due to cloud contamination or other reasons. Data availability 
illustrated big differences between northern and southern China (Figure S4, Tables S1–S2). The northern portion 
of China generally obtained much better data availability than that in southern China. Bad data availability during 
the growing period might introduce commission errors in paddy rice and omission errors in maize (i.e., Sichuan 
province). The second is associated with the mixed problem of MODIS images. Small-holder farms dominated in 
China36. The mixed-pixel problems might be more serious in mountainous and hilly regions in southern China. 
Although we proposed several strategies (i.e., pixel-purity-based threshold) to cope with the mixed-pixel prob-
lems, there are still uncertainties associated with the seriously mixed pixels.

The third one could be introduced by errors associated with the cropland dataset. The quality of existing 
cropland products is considerably low due to its high landscape heterogeneity37. Additionally, we applied the 
static cropland mask in 2020 instead of the annually updated cropland during 2015–2021. Cropland in China 
has experienced tremendous changes such as cropland loss due to urban sprawl and ecological projects (grain 
for green projects) as well as cropland compensation38–40. The mapping accuracy of paddy rice and maize could 
be influenced by cropland data quality. Specifically, omission errors of cropland could probably introduce under-
estimation problems, since non-cropland pixels were considered in the classification processes. Commission 
errors of cropland data would not be associated with overestimation on the condition that the proposed phenol-
ogy indicators would separate the target crop from other crops as well as non-crop vegetation. Future work could 
be conducted to propose crop mapping algorithms with no requirements of cropland data, such as the winter 
wheat mapping algorithm applied in this study15.

Usage Notes
We provide updated spatiotemporal explicit datasets of major cropping patterns in China during 2015–2021 
(Fig. 4). Maps of crop types are critically important for agricultural monitoring systems41. National-scale agri-
cultural maps can be applied to assess national food security and promote sustainable agriculture through a 
better understanding of the impacts from agricultural policies, climatic extreme and agricultural practices, 

Fig. 3  Comparisons between NSBC reports and MODIS-estimates of paddy rice, wheat, and maize from 2015 
to 2020 (a–f).

https://doi.org/10.1038/s41597-022-01589-8
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such as the cropping intensity, crop rotations and crop diversification42,43. Reliable and updated information on 
cropping pattern is vital for assessing the changes in cropping patterns under agricultural supply-side reform 
policy in China. Experiences and lessons from China’s agricultural reform are valuable for the whole world. We 
recommend users consider the layer of ChinaCP-DA to determine which provinces and years have available 
high-quality data (Figure S3). Pixels with low data availability should be applied with caution. Year 2020 have 
much lower data availability compared to other years (Figure S3, Table S3), since the 2020 monsoon has brought 
historic amounts of rain to China.

Code availability
Time-series images processing and crop mapping algorithms were implemented in MATLAB language. The 
processing code and related files are available at https://doi.org/10.6084/m9.figshare.14936052. Datasets of 
cropping patterns in China and other countries/regions with finer resolutions (i.e. 10–30 m) can be produced 
based on publicly accessible time series images of Landsat and Sentinel-2 Multispectral Instrument (MSI) using 
the shared processing code35.
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