8 research outputs found

    BiGA-YOLO: A Lightweight Object Detection Network Based on YOLOv5 for Autonomous Driving

    No full text
    Object detection in autonomous driving scenarios has become a popular task in recent years. Due to the high-speed movement of vehicles and the complex changes in the surrounding environment, objects of different scales need to be detected, which places high demands on the performance of the network model. Additionally, different driving devices have varying performance capabilities, and a lightweight model is needed to ensure the stable operation of devices with limited computing power. To address these challenges, we propose a lightweight network called BiGA-YOLO based on YOLOv5. We design the Ghost-Hardswish Conv module to simplify the convolution operations and incorporate spatial coordinate information into feature maps using Coordinate Attention. We also replace the PANet structure with the BiFPN structure to enhance the expression ability of features through different weights during the process of fusing multi-scale feature maps. Finally, we conducted extensive experiments on the KITTI dataset, and our BiGA-YOLO achieved a [email protected] of 92.2% and a [email protected]:0.95 of 68.3%. Compared to the baseline model YOLOv5, our proposed model achieved improvements of 1.9% and 4.7% in [email protected] and [email protected]:0.95, respectively, while reducing the model size by 15.7% and the computational cost by 16%. The detection speed was also increased by 6.3 FPS. Through analysis and discussion of the experimental results, we demonstrate that our proposed model is superior, achieving a balance between detection accuracy, model size, and detection speed

    On-Site Biolayer Interferometry-Based Biosensing of Carbamazepine in Whole Blood of Epileptic Patients

    No full text
    On-site monitoring of carbamazepine (CBZ) that allows rapid, sensitive, automatic, and high-throughput detection directly from whole blood is of urgent demand in current clinical practice for precision medicine. Herein, we developed two types (being indirect vs. direct) of fiber-optic biolayer interferometry (FO-BLI) biosensors for on-site CBZ monitoring. The indirect FO-BLI biosensor preincubated samples with monoclonal antibodies towards CBZ (MA-CBZ), and the mixture competes with immobilized CBZ to bind towards MA-CBZ. The direct FO-BLI biosensor used sample CBZ and CBZ-horseradish peroxidase (CBZ-HRP) conjugate to directly compete for binding with immobilized MA-CBZ, followed by a metal precipitate 3,3′-diaminobenzidine to amplify the signals. Indirect FO-BLI detected CBZ within its therapeutic range and was regenerated up to 12 times with negligible baseline drift, but reported results in 25 min. However, Direct FO-BLI achieved CBZ detection in approximately 7.5 min, down to as low as 10 ng/mL, with good accuracy, specificity and negligible matric interference using a high-salt buffer. Validation of Direct FO-BLI using six paired sera and whole blood from epileptic patients showed excellent agreement with ultra-performance liquid chromatography. Being automated and able to achieve high throughput, Direct FO-BLI proved itself to be more effective for integration into the clinic by delivering CBZ values from whole blood within minutes

    Enantioseparation of N-derivatized amino acids by micro-liquid chromatography using carbamoylated quinidine functionalized monolithic stationary phase.

    Get PDF
    In order to obtain satisfactory column permeability, efficiency and selectivity for micro-HPLC, a capillary monolithic column containing O-9-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine (MQD) as chiral selector was re-optimized. The monolithic column was used to successfully enantioresolve a wide range of N-derivatized amino acids including alanine, leucine, methionine, threonine, phenylalanine, valine, serine, isoleucine, tryptophan, and cysteine. The influence of mobile phase parameters, such as the organic solvent type and concentration, the apparent pH, and buffer concentration, on retention and enantioseparation of N-derivatized amino acids has been investigated. 3,5-dinitrobenzoyl-amino acids and 3,5-dichlorobenzoyl-amino acids were resolved into enantiomers with exceptionally high selectivity and resolution. The chemoselectivity of the monolithic column for a multicomponent mixture of N-derivatized amino acids was also investigated. A mixture of three pairs of 3,5-dichlorobenzoyl-amino acids could be fully resolved in 22.5 min

    Separation of N-derivatized di- and tri-peptide stereoisomers by micro-liquid chromatography using a quinidine-based monolithic column - Analysis of l-carnosine in dietary supplements.

    Get PDF
    In the present study, a new analytical methodology was developed enabling the enantiomeric determination of N-derivatized di- and tri-peptides in dietary supplements using chiral micro-LC on a monolithic column consisting of poly(O-9-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine-co-2-hydroxy ethyl methacrylate-co-ethylene dimethacrylate) (poly(MQD-co-HEMA-co-EDMA)). After optimization of the mobile phase conditions, a baseline resolution of the stereoisomers of 24 out of 53 N-derivatized di- and tri-peptides was obtained. 3,5-Dinitrobenzoyl- and 3,5-dichlorobenzoyl-peptide stereoisomers were separated with exceptionally high selectivity and resolution. The monolithic column was then applied to the quantitative analysis of l-carnosine and its enantiomeric impurity in three different commercial dietary supplements. Method validation demonstrated satisfactory results in terms of linearity, precision, selectivity, accuracy and limits of detection and quantification. The determined amounts of l-carnosine in commercial formulations were in agreement with the labeled content for all analyzed samples, and the enantiomeric impurity was found to be below the limit of detection (LOD), showing the potential of the poly(MQD-co-HEMA-co-EDMA) monolithic column as a reliable tool for the quality control of l-carnosine in dietary supplements by micro-LC

    Qingda granule prevents obesity-induced hypertension and cardiac dysfunction by inhibiting adverse Akt signaling activation

    No full text
    Obesity rates have rapidly increased worldwide and obesity-related diseases such as hypertension and cardiovascular diseases have become leading factors for global morbidity and mortality. Currently, there are no effective treatments that can prevent or reverse obesity long-term, and hence the prevention of obesity-related adverse effects such as hypertension is critical. Qingda granule (QDG) is a condensed Traditional Chinese Medicine (TCM) formula that has been used clinically for treating hypertension, however, its effectiveness in obesity-induced hypertension and cardiac dysfunction remains explored. Mouse models of obesity via long-term feeding of high-fat high-fructose diet (HFFD) were established to examine the effect and mechanism of QDG in protecting against obesity-induced hypertension and cardiac dysfunction. C57BL/6 mice were fed with either normal diet or HFFD over a period of 16 weeks and administered with either saline or QDG for assessment of obesity-induced blood pressure and cardiac function. QDG administration demonstrated robust anti-hypertensive effects and significantly attenuated HFFD-induced elevations in blood pressures. Moreover, QDG treatment also demonstrated robust cardioprotective effects during obesity-induced hypertension by markedly improving cardiac function and preventing cardiac hypertrophy. QDG protected against obesity-induced hypertension and cardiac dysfunction was due to its ability to prevent adverse chronic activation of Akt signaling pathway during long-term feeding of HFFD. Long-term usage of QDG treatments exhibited no observable side effects and also completely prevented obesity-induced organ damage, demonstrating the feasibility and safety of prolonged use. Our findings thus elucidated the role of QDG in preventing obesity-induced hypertension and cardiac hypertrophy via inhibiting adverse activation of Akt signaling activation. Therefore, our study provides the theoretical basis for the utilization of QDG as both a safe and effective drug in the therapeutic treatment of metabolic diseases such as obesity-induced hypertension

    Electrodeposition of Cobalt and Rare Earth-Cobalt in Urea-NaBr-KBr Melt

    No full text
    稀土-钴合金具有许多优异性能,可用于制作磁性、磁光…等功能材料。日本学者研究了在有机电解液中电沉积Co-Gd薄膜,未见前人研究低温熔盐体系中电沉积稀土合金的报道。尿素-(79mol%)-NaBr(19.5mol%)-KBr(1.5mol%)的熔点为51℃,可在100℃左右下作为电解介质。在尿素熔体中加入BaOAc,能增加Co ̄(2+)还原为Co的阴极极化。因此选择100℃的尿素-NaBr-KBr-NaOAc作为本底熔体,研究Co ̄(2+)的电还原,镧、铽、镝、铥各自与钴的电解共沉积。在所研究的熔体中,Co ̄(2+)一步不可逆还原为Co。测定Co ̄(2+)+2e=Co反应的传递系数α为0.45,Co ̄(2+)在熔体中的扩散系数为2.5×10 ̄(-6)cm ̄2·s ̄(-1)。稀土离子还原为稀土金属的电位很负,以致在本底熔体分解前未出现阴极波。但在含COCl_2熔体中加入REC_3(LaCl_3、TbCl_3、DyCl_3、TmCl_3),使钴的析出电位向正方移动,而且阴极电流增大,因而有可能发生RE(La、Tb、Dy、Tm)与Co的诱导共沉积。在尿素-NaBr-KBr-NaOAc-CoCl_2-RECl_3熔体作者联系地址:中山大学化学系Author's Address: Department of Chemistry,Zhongshan University,Guangzhou 51027
    corecore