

Document downloaded from the institutional repository of the University of Alcala: https://ebuah.uah.es/dspace/

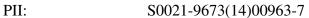
This is a postprint version of the following published document:

Wang, Qiqin et al., 2014. Enantioseparation of N-derivatized amino acids by micro-liquid chromatography using carbamoylated quinidine functionalized monolithic stationary phase. Journal of Chromatography A, 1363, pp.207–215.

Available at https://doi.org/10.1016/j.chroma.2014.06.039

© 2014 Elsevier

(Article begins on next page)


This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.

Accepted Manuscript

Title: Enantioseparation of *N*-derivatized amino acids by micro-liquid chromatography using carbamoylated quinidine functionalized monolithic stationary phase

Author: Qiqin Wang Jun Feng Hai Han Peijie Zhu Huihui Wu María Luisa Marina Jacques Crommen Zhengjing Jiang

DOI: http://dx.doi.org/doi:10.1016/j.chroma.2014.06.039

Reference: CHROMA 355518

To appear in: Journal of Chromatography A

Received date: 14-4-2014 Revised date: 12-6-2014 Accepted date: 12-6-2014

Please cite this article as: Q. Wang, J. Feng, H. Han, P. Zhu, H. Wu, M.L. Marina, J. Crommen, Z. Jiang, Enantioseparation of *N*-derivatized amino acids by micro-liquid chromatography using carbamoylated quinidine functionalized monolithic stationary phase, *Journal of Chromatography A* (2014), http://dx.doi.org/10.1016/j.chroma.2014.06.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Enantioseparation of N -derivatized amino acids by
2	micro-liquid chromatography using carbamoylated
3	quinidine functionalized monolithic stationary phase
4 5 6 7	Qiqin Wang ^{1,2#} , Jun Feng ^{1#} , Hai Han ¹ , Peijie Zhu ¹ , Huihui Wu ¹ , María Luisa Marina ² , Jacques Crommen ^{1,3} , Zhengjing Jiang ^{1,*}
8	¹ Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic
9	Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University,
10	Guangzhou 510632, China
11	² Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of
12	Biology, Environmental Sciences and Chemistry, University of Alcalá, Ctra. Madrid-Barcelona,
13	Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain
14	³ Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences,
15	University of Liege, CHU B36, B-4000 Liege, Belgium
16	
17	*Corresponding author
18	Tel.:+86 2085223604
19	E-mail address: jzjjackson@hotmail.com
20	
21	# These authors contributed equally to this work.
22	
23	
2425	
26	
27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	

1

A	ha	tra	ot.
\mathbf{A}		пи	

40

41

42

43 44

45

46 47

48

49

50

5152

In order to obtain satisfactory column permeability, efficiency and selectivity for micro-HPLC, a capillary monolithic column containing O-9-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine (MQD) as chiral selector was re-optimized. The monolithic column was used to successfully enantioresolve a wide range of N-derivatized amino acids including alanine, leucine, methionine, threonine, phenylalanine, valine, serine, isoleucine, tryptophan, and cysteine. The influence of mobile phase parameters, such as the organic solvent type and concentration, the apparent pH, and buffer concentration, on retention and enantioseparation of N-derivatized amino acids has been investigated. 3,5-dinitrobenzoyl-amino acids and 3,5-dichlorobenzoyl-amino acids were resolved into enantiomers with exceptionally high selectivity and resolution. The chemoselectivity of the monolithic column for a multicomponent mixture of N-derivatized amino acids was also investigated. A mixture of three pairs of 3,5-dichlorobenzoyl-amino acids could be fully resolved in 22.5 minutes.

545556

53

Keywords: carbamoylated quinidine / enantioseparations / *N*-derivatized amino acids / monolithic columns / micro-HPLC

58 59

57

1. Introduction

59

60 The stereochemistry of amino acids plays an important role in their biological and 61 pharmacological properties. An increasing number of observations suggests that 62 D-amino acids have a significant influence in living organisms, including humans [1]. 63 Some D-amino acids have been found to be related to different diseases, including 64 schizophrenia [2], Alzheimer's disease [3] and renal disorders [4]. For example, D-serine may be useful as a biomarker and even a therapeutic agent for neurological 65 66 disorders [5], while L-serine plays a key role in the central nervous system and cellular proliferation [6]. Moreover, amino acids as chiral building blocks have a significant 67 importance for synthetic therapeutic peptides [7]. However, it is difficult to resolve 68 free amino acids into their enantiomers because of an obvious lack of appropriate 69 70 functionalities to interact with the chiral selectors [8]. In order to enhance the 71 intermolecular interaction between amino acids and chiral selectors, additional 72 interaction sites could be introduced through the derivatization of amino groups [9], 73 using reagents such as carbazole-9-carbonyl (CC) chloride [9], 2,4-dinitrophenyl 74 (DNP) fluoride [10], 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) [11], or dansyl 75 (DNS) chloride [12]. These UV-absorbing or fluorescent derivatization agents could also bring a strong chromophore or fluorophore into amino acids and peptides for 76 77 improving detection sensitivity [9,13]. Therefore, the enantioseparation of 78 N-derivatized amino acids remains a hot research topic even if well advanced. A series 79 of chiral stationary phases (CSPs), containing polysaccharides [14], macrocyclic 80 antibiotics [15],native or cationic cyclodextrins (CD) [16],and 81 (S)-N-3,5-dinitrobenzoyl-1-naphthylglycine [17] as chiral selectors, have been applied 82 to the enantioseparation of different kinds of N-derivatized amino acids. In particular, 83 carbamoylated quinine and quinidine immobilized on silica microparticles have 84 received great attention due to their excellent enantioselectivity towards various kinds 85 of acidic analytes, such as N-derivatized amino acids [18-19], profens [20], α-aryloxy 86 alkanoic acids [18], 1,4-dihydropyridine monocarboxylic acid [21], pyrethroic acids 87 [22], N-derivatized peptides [23], dafachronic acids [24], and aminophosphonic acids 88 [25]. The enantioselectivity could be attributed to a global effect, including ion-pair 89 formation between chiral analytes and selector, dipole-dipole, hydrophobic, hydrogen 90 bonding, π - π and steric interactions [26]. 91 In the last decade, monolithic columns have proved to be an effective alternative to

92	packed columns and have attracted considerable interest owing to their facile
93	preparation methodology and good column characteristics, such as permeability and
94	efficiency [27]. Lämmerhofer et al. developed quinine and quinidine-based chiral
95	monolithic columns, namely poly
96	(O-9-(tert-butylcarbamoyl)-11-[2-(methacryloyloxy)ethylthio]
97	-10,11-dihydroquinine-co-2-hydroxyethyl methacrylate-co-ethylene dimethacrylate)
98	and poly
99	$(O-9-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine-{\it co}-2-hydroxyeth$
100	yl methacrylate-co-ethylene dimethacrylate) (poly(MQD-co-HEMA-co-EDMA)) for
101	capillary electrochromatography (CEC) applications by in situ copolymerization of
102	O-9-(tert-butylcarbamoyl)-11-[2-(methacryloyloxy)ethylthio]-10,11-dihydroquinine
103	or O-9-[2-(methacryloyloxy)-ethylcarbamoyl]- 10,11-dihydroquinidine [12,28]. These
104	macroporous chiral monolithic columns exhibited very good enantioselectivity and
105	column efficiency in the CEC mode for several N-derivatized amino acids, such as
106	CC-Alanine, CC-Serine, and 3,5-dinitrobenzoyl (DNB)-Leucine [12,28-30]. However,
107	their applicability to micro-HPLC separations does not seem to have been
108	investigated so far. It is well known that the column properties required for
109	micro-HPLC are different from those for CEC. Therefore, a systematic optimization
110	of the polymerization conditions is required in order to obtain satisfactory
111	micro-HPLC performance with respect to column permeability, mechanical stability,
112	efficiency and selectivity. Besides, it is of high interest to systematically evaluate the
113	enantioselectivity of poly(MQD-co-HEMA-co-EDMA) monolithic columns towards a
114	wider range of analytes since only a few derivatives of leucine and valine have been
115	examined so far [12,28-30].
116	In this study, a capillary liquid chromatography column containing carbamoylated
117	quinidine was prepared according to Lämmerhofer et al [28]. In order to obtain
118	satisfactory column permeability, efficiency and selectivity in micro-HPLC, the
119	composition of the polymerization mixture was re-optimized. The optimized
120	monolithic column was subsequently applied to the enantioseparation of various kinds
121	of N-derivatized amino acids, containing benzoyl (B), p-nitrobenzoyl (p-NB),
122	3,5-dinitrobenzoyl (3,5-DNB), 3,5-dimethoxybenzoyl (3,5-DMB),
123	9-fluorenylmethoxycarbonyl (Fmoc), 3,5-dichlorobenzoyl (3,5-DClB),
124	m-chlorobenzoyl (m -ClB), p -chlorobenzoyl (p -ClB), or o -chlorobenzoyl (o -ClB)
125	protecting groups. The influence of the organic solvent type and content, the buffer

126	concentration and the apparent pH of the mobile phase on the enantioseparation of
127	these amino acid derivatives has also been investigated. The separation mechanism is
128	also discussed on the basis of a comparison of the influence of the type of
129	N-protecting group and amino acid on enantioseparation.
130	
131	2. Experimental
132	2.1. Chemicals and materials
133	3-(Trimethoxysilyl)-propyl methacrylate (γ-MAPS), 2,2'-azobisisobutyronitrile
134	(AIBN), 2-hydroxyethyl methacrylate (HEMA), ethylene dimethacrylate (EDMA),
135	methanol (MeOH), dodecanol, chloroform, cyclohexanol, acetonitrile (ACN), acetic
136	acid, ammonium formate , ammonium acetate and dibutyltin dilaurate were all
137	purchased from Aladdin Chemicals (Shanghai, China). 4-Methoxyphenol and
138	2-isocyanatoethyl methacrylate were obtained from Maya Reagent (Jiaxing, Zhejiang,
139	China). All racemic amino acids (alanine, leucine, methionine, threonine,
140	phenylalanine, valine, serine, isoleucine, tryptophan, and cysteine),
141	10,11-dihydroquinidine (DHQD) and nine aroyl chlorides (p-nitrobenzoyl chloride,
142	3,5-dinitrobenzoyl chloride, 3,5-dimethoxybenzoyl chloride,
143	9-fluorenylmethoxycarbonyl chloride, 3,5-dichlorobenzoyl chloride, <i>m</i> -chlorobenzoyl
144	chloride, p-chlorobenzoyl chloride, benzoyl chloride, and o-chlorobenzoyl chloride)
145	were purchased from Energy Chemical (Shanghai, China). All N-derivatized amino
146	acids were synthesized according to a standard procedure [31] except Fmoc and
147	3,5-DClB derivatives. As described previously [32], amino acids were amidated by
148	9-fluorenylmethoxycarbonyl chloride in aqueous solution to afford Fmoc-derivatized
149	amino acids. 3,5-DClB derivatives were synthesized through reaction of amino acids
150	with 3,5-dichlorobenzoyl chloride in THF [33]. Distilled water was filtered through a
151	2-μm membrane before use. The fused-silica capillaries (375 μm O.D. \times 100 μm I.D.)
152	were obtained from Ruifeng Chromatography Ltd. (Yongnian, Hebei, China).
153	
154	2.2. Instrumentation
155	All scanning electron microscopy (SEM) experiments were carried out using an
156	ultra-high 165 resolution Hitachi S-4800 SEM (Tokyo, Japan) at an acceleration
157	voltage of 1 kV. A Jinghong DK-S22 water bath (Shanghai, China) was used for
158	thermally initiated copolymerization. All micro-HPLC experiments were carried out

159	on a self-assembled HPLC system that consisted of a DiNa nano gradient pump
160	(Tokyo, Japan), a Valco four-port injection valve with 20 nL internal loop (Houston,
161	TX, USA), and a Shimadzu SPD-15C UV detector (Kyoto, Japan). Data acquisition
162	and data handling were performed using a Unimicro Trisep TM Workstation 2003
163	(Shanghai, China). All chromatograms were converted to a text file and redrawn using
164	Microcal Origin 8.0. The pH values were monitored by a Sartorius PB-10 pH meter
165	(Gottingen, Germany).
166	
167	2.3. Chromatographic conditions
168	Unless otherwise stated, the mobile phase was a mixture of ACN/0.1 M ammonium
169	acetate (80/20; v/v). The mobile phase apparent pH was adjusted to the desired value
170	by adding acetic acid. All chiral samples were dissolved in MeOH to reach a final
171	concentration around 1 mg/mL. The mobile phase was filtered through a 0.22-μm
172	membrane and degassed before use. The flow rate of the mobile phase was set at 1
173	$\mu L/\text{min}$ and the injection volume was 20 nL. The analytes were all detected at a
174	wavelength of 254 nm.
175	
176	2.4. Preparation of poly(MQD-co-HEMA-co-EDMA) monolithic columns
176 177	2.4. Preparation of poly(MQD-co-HEMA-co-EDMA) monolithic columns 2.4.1. Synthesis of
177	2.4.1. Synthesis of
177 178	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine
177178179	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al.
177178179180	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate
177 178 179 180 181	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin
177 178 179 180 181 182	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin dilaurate (10 drops) and 4-methoxyphenol (10 mg) in THF (30 mL), followed by
177 178 179 180 181 182 183	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin dilaurate (10 drops) and 4-methoxyphenol (10 mg) in THF (30 mL), followed by stirring for 96 h at room temperature. The mixture was filtered, concentrated under
177 178 179 180 181 182 183	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin dilaurate (10 drops) and 4-methoxyphenol (10 mg) in THF (30 mL), followed by stirring for 96 h at room temperature. The mixture was filtered, concentrated under reduced pressure. The residue was purified on a packed silica column using a eluent
177 178 179 180 181 182 183 184 185	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin dilaurate (10 drops) and 4-methoxyphenol (10 mg) in THF (30 mL), followed by stirring for 96 h at room temperature. The mixture was filtered, concentrated under reduced pressure. The residue was purified on a packed silica column using a eluent consisting of chloroform /MeOH (40:1; v/v) to afford MQD (white powder, yield
177 178 179 180 181 182 183 184 185 186	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin dilaurate (10 drops) and 4-methoxyphenol (10 mg) in THF (30 mL), followed by stirring for 96 h at room temperature. The mixture was filtered, concentrated under reduced pressure. The residue was purified on a packed silica column using a eluent consisting of chloroform /MeOH (40:1; v/v) to afford MQD (white powder, yield
177 178 179 180 181 182 183 184 185 186 187	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin dilaurate (10 drops) and 4-methoxyphenol (10 mg) in THF (30 mL), followed by stirring for 96 h at room temperature. The mixture was filtered, concentrated under reduced pressure. The residue was purified on a packed silica column using a eluent consisting of chloroform /MeOH (40:1; v/v) to afford MQD (white powder, yield 58.7%).
177 178 179 180 181 182 183 184 185 186 187	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin dilaurate (10 drops) and 4-methoxyphenol (10 mg) in THF (30 mL), followed by stirring for 96 h at room temperature. The mixture was filtered, concentrated under reduced pressure. The residue was purified on a packed silica column using a eluent consisting of chloroform /MeOH (40:1; v/v) to afford MQD (white powder, yield 58.7%). 2.4.2. Preparation of poly(MQD-co-HEMA-co-EDMA) monolithic columns
177 178 179 180 181 182 183 184 185 186 187 188	2.4.1. Synthesis of O-[2-(Methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine The functional monomer MQD was synthesized according to Lämmerhofer et al. [28] using a properly modified procedure. In brief, 2-isocyanatoethyl methacrylate (1.4 mL, 10 mmol) was added to a mixture of DHQD (1.3 g, 4 mmol), dibutyltin dilaurate (10 drops) and 4-methoxyphenol (10 mg) in THF (30 mL), followed by stirring for 96 h at room temperature. The mixture was filtered, concentrated under reduced pressure. The residue was purified on a packed silica column using a eluent consisting of chloroform /MeOH (40:1; v/v) to afford MQD (white powder, yield 58.7%). 2.4.2. Preparation of poly(MQD-co-HEMA-co-EDMA) monolithic columns The monomers (MQD, HEMA, and EDMA), the binary porogenic mixture

193 satisfactory permeability and selectivity (Table 1). After sonication and bubbling with 194 nitrogen for 5 min, this polymerization mixture was transferred into a 20-cm long 195 capillary, which had been pretreated with γ-MAPS in order to afford anchoring sites 196 for the polymeric bulk [34-35]. The filled capillaries were sealed with GC septa and 197 submerged into a water bath at 60 °C for 20 h. The obtained monolithic columns were 198 then flushed out using MeOH in order to remove unreacted chemicals and porogens. 199 A 2-3 mm detection window was created at a distance of 3 cm from the end of the 200 column using a thermal wire stripper. The capillary column was cut into a total length 201 of 18 cm with an effective length of 15 cm. The finally obtained bulk polymer was 202 taken for elemental analysis. A 3-5 mm length of monolith was then cut, placed on an 203 aluminum stub and then sputter-coated with gold for SEM analysis.

204

205

2.5. Calculations

- The enantioselectivity (α) was calculated according to the following expression: $\alpha =$
- 207 k_2/k_1 where $k = (t_R t_0)/t_0$ (t_0 is the elution time of the solvent peak, which was used as
- the dead time, t_{R1} , t_{R2} , k_1 and k_2 are the retention times and the retention factors of the
- first and second eluting enantiomers, respectively) [34]. The theoretical plate number
- 210 (N) and the resolution factor (R_s) were determined according to the standard equations
- based on their corresponding widths at half-height [36].

212

213

3. Results and discussion

214 3.1. Preparation and optimization of poly(MQD-co-HEMA-co-EDMA)

215 **monolithic columns**

- 216 Lämmerhofer et al. previously prepared successfully a quinidine-based chiral
- 217 monolithic column for enantioseparations in the CEC mode [28]. However, a column
- 218 with satisfactory performance in CEC might not be suitable for a successful HPLC
- separation. The permeability is a very important property of an HPLC column
- because of its direct and indirect influence on a number of factors, such as stability,
- 221 analysis time, column efficiency, resolution etc. In order to obtain a poly
- 222 (MQD-co-HEMA-co-EDMA) monolithic column with satisfactory permeability and
- 223 efficiency in micro-HPLC, the composition of the polymerizable mixture was
- 224 re-optimized as shown in **Table 1** by evaluating the properties and structure of the
- 225 monoliths using micro-HPLC and SEM.

226	In order to investigate the effect of the porogens in the reaction mixture, the weight
227	content of the binary porogenic mixture was varied from 70% (C1) to 60% w/w (C3)
228	while the composition of monomers and porogens was kept constant. It was observed
229	that the decrease of the total weight content of porogens resulted in a clear increase of
230	the backpressure from 2.9 MPa to 10.1 MPa. Column C2 exhibited a suitable
231	backpressure and the highest column efficiency (24400 theoretical plates/m at a linear
232	flow rate of 1.1 mm/s using naphthalene as test compound) when compared to
233	columns C1 and C3.
234	It was also observed that the co-monomer HEMA affected the column performance.
235	As the weight fraction of HEMA in the monomers increased from 52.5% (C2) to
236	57.5% (C5) w/w, the theoretical plate number increased from 24400 to 32000
237	plates/m while the backpressure remained almost constant. A further increase of the
238	HEMA weight content to 60% (C6) caused a significant increase of backpressure and
239	a slight decrease in column efficiency. Therefore, considering the column
240	permeability and efficiency, a HEMA weight content of 57.5% in the monomers was
241	selected for all further experiments.
242	The composition of the porogenic mixture (dodecanol/cyclohexane ratio) was also
243	taken into consideration. The micro-HPLC experiments showed that the column
244	backpressure increased from 5.8 MPa to 13.1 MPa when the content of dodecanol
245	decreased from 88.33% (C7) to 78.33% (C8) wt%. On the other hand, the best column
246	efficiency was obtained on column C5 with 83.33 % dodecanol in the porogenic
247	mixture.
248	Finally, a polymerization mixture consisting of 35 wt% monomers
249	(MQD/HEMA/EDMA, 20/57.5/22.5, w/w/w) and 65 wt% porogens
250	(dodecanol/cyclohexanol, 83.33/16.67, w/w) was chosen for all further studies since it
251	yielded the monolith C5 exhibiting uniform structure and good permeability and
252	efficiency. Fig. 1a and Fig. 1b shows the SEM result for column C5, where spherical
253	units agglomerate into large clusters interdispersed by large-pore channels.
254	
255	3.2. Permeability and reproducibility of poly(MQD-co-HEMA-co-EDMA)
256	monolithic columns
257	The normachility of the poly/MOD so HEMA so EDMA) manalithic column was

- 257 The permeability of the poly(MQD-co-HEMA-co-EDMA) monolithic column was
- determined by pumping ACN, MeOH, and water through it at different linear flow 258
- rates. According to Bristow and Knox [37], the permeability K can be expressed as 259

260	follows:
261	$K = (uL/\Delta P)\eta$
262	where η is the dynamic viscosity of the eluent, u is the linear velocity of the mobile
263	phase, L is the length of the column, and ΔP is the pressure drop across the column.
264	Since toluene was unretained in organic mobile phases, it was selected as dead-time
265	marker when ACN and MeOH were used as eluents. When using water as mobile
266	phase, thiourea was selected as t_0 marker. The good mechanical stability of column
267	C5 could be evidenced by the excellent linearity between backpressure and linear
268	velocity over the pressure range of 0-13 MPa (Figure not shown). The calculated K
269	values for column C5 are given in Table 2. The results indicate a high permeability
270	for the optimized poly(MQD-co-HEMA-co-EDMA) monolithic column, which is
271	ideal for HPLC applications.
272	In addition, the reproducibility of the poly(MQD-co-HEMA-co-EDMA) monolithic
273	columns was assessed by determining the relative standard deviations (RSDs) for the
274	retention factors of two test analytes, i.e. anisole and naphthalene. A mixture of
275	ACN/H_2O (40/60, v/v) was used as mobile phase. The RSD values for run to run (n =
276	10) repeatability of anisole and naphthalene retention factors were 0.88% and 1.08%,
277	respectively. The RSD values for day to day (n=5) repeatability were 2.18% and
278	2.78%, respectively. These data demonstrate the stability of the
279	poly(MQD-co-HEMA-co-EDMA) monolithic columns, since their properties do not
280	seem to change significantly either with time or with the number of injections.
281	Furthermore, the batch to batch (n=3) reproducibility values for anisole and
282	naphthalene retention factors were 4.38% and 4.47%, respectively. These results
283	further confirm the good reproducibility of the optimized
284	poly(MQD-co-HEMA-co-EDMA) monolithic columns.
285	
286	3.3. Effects of mobile phase composition on enantioseparation
287	In order to systematically evaluate the enantioselectivity of the optimized
288	poly(MQD-co-HEMA-co-EDMA) monolithic columns in the micro-HPLC mode, two
289	N-derivatized amino acids, i.e. 3,5-DNB-Leucine and 3,5-DClB-Leucine, were chosen
290	as test analytes. The influence of the organic solvent type and concentration, the
291	apparent pH and the buffer concentration was investigated.
292	The influence of the organic solvent type (MeOH and ACN) in the mobile phase on

293

294	3,5-DClB-Leucine could be enantioseparated with mixtures of either MeOH/0.1 M
295	ammonium acetate (80/20, v/v , apparent pH = 5.3) or ACN/0.1 M ammonium acetate
296	(80/20, v/v, apparent pH = 5.3) as mobile phase. However, the retention of the second
297	enantiomer of 3,5-DNB-Leucine was too high to be eluted from the column within
298	120 min when MeOH/0.1 M ammonium acetate ($80/20$, v/v, apparent pH = 5.3) was
299	used as mobile phase. Therefore ACN/H ₂ O system was chosen for studying the
300	influence of the organic solvent concentration on the enantioseparation of the two
301	N-derivatized amino acids. As can be seen in Table 3, the retention factors of both
302	analytes increased dramatically with decreasing ACN content from 80 to 60%.
303	However the enantioselectivity (α) remained fairly constant over the studied ACN
304	concentration range while the enantioresolution (R_s) increased with decreasing ACN
305	concentration, owing to increasing retention and column efficiency. This might
306	suggest that part of the retention on the poly(MQD-co-HEMA-co-EDMA) monolithic
307	stationary phase under the tested conditions is due to hydrophobic interaction and that
308	the latter is not responsible for enantioselectivity. In order to find the best compromise
309	between retention times and enantiore solution, a mobile phase containing 80% ACN
310	was considered as the most suitable for further experiments.
311	It has been reported that the electrostatic interactions between the negatively charged
312	carboxylate function of N-derivatized amino acids and the positively charged tertiary
313	nitrogen of quinidine play an important role in the enantioselectivity of
314	quinidine-based stationary phases [8]. The mobile phase pH could affect the
315	ionization state of both quinidine (pKa = 8.72) [38] stationary phase and analytes, i.e.
316	3,5-DNB-Leucine (pKa = 3.77) [39] and 3,5-DClB-Leucine (pKa = 3.79) [39].
317	Therefore its effect on the enantioseparation of the two N-derivatized amino acids was
318	also investigated by adjusting the apparent pH value of the mobile phase (ACN/0.1 M
319	ammonium acetate (80/20; v/v)) to 6.3, 5.3 and 4.3 after mixing with ACN. As shown
320	in Table 4 , both retention factors $(k_1 \text{ and } k_2)$ and R_s of 3,5-DNB-Leucine and
321	3,5-DClB-Leucine decreased with decreasing mobile phase apparent pH from 6.3 to
322	4.3. The α values remained almost constant between pH 6.3 and 5.3, and then
323	decreased significantly at pH 4.3. This behavior is certainly related to the fact that in
324	the selected apparent pH range, the quinidine stationary phase remains fully positively
325	charged while the negative charge of the two N-derivatized amino acids will start
326	decreasing with decreasing apparent pH, resulting in a reduction of electrostatic

327 interactions and hence of enantioselectivity. Finally, an apparent pH of 5.3 was 328 selected because it represented the best compromise between enantioresolution and 329 analysis time. 330 The influence of the buffer concentration was also investigated by varying the 331 concentration of ammonium acetate from 0.05 to 0.15 M, while the other 332 chromatographic conditions were kept constant (**Table 5**). No significant influence on 333 enantioselectivity for both N-derivatized amino acids was observed in this 334 concentration range. However, their retention and enantioresolution clearly increased 335 with decreasing ammonium acetate concentration. These results might indicate that 336 the contribution of electrostatic interactions to the retention of these acidic analytes 337 increases with decreasing concentration of the competing anion acetate. A 0.1 M 338 concentration of ammonium acetate was found to be the most suitable with respect to 339 enantioresolution and analysis time. 340

341

3.4. Enantioseparation of N-derivatized amino acids

- of 342 order the In to systematically evaluate enantioselectivity poly
- 343 (MQD-co-HEMA-co-EDMA) monolithic columns in the micro-HPLC mode, various
- 344 kinds of N-derivatized amino acids were synthesized and enantioseparated (**Table 6**).
- 345 The tagging reagents used to derivatize the amino acids included the following
- 346 N-protecting groups: B, p-NB, 3,5-DNB, 3,5-DMB, Fmoc, 3,5-DClB, m-ClB, p-ClB
- 347 and *o*-ClB (**Fig. 2**).
- The results $(k_1, k_2, \alpha, R_s, N_1 \text{ and } N_2)$ obtained for 47 N-derivatized amino acids 348
- 349 (alanine, isoleucine, leucine, methionine, valine, threonine, phenylalanine, cysteine,
- 350 serine, and tryptophan derivatives) on poly (MQD-co-HEMA-co-EDMA) monolithic
- 351 columns are given in **Table 6**. Under the selected chromatographic conditions, 44 out
- 352 of 47 analytes could be baseline enantioresolved ($R_s > 1.5$), and the other three
- 353 analytes could be partially enantioseparated (0.74 $\leq R_s < 1.5$). The highest
- 354 enantioresolution values were observed for 3,5-DNB derivatives, followed by
- 355 3,5-DClB derivatives. It was also noticed that the poly (MQD-co-HEMA-co-EDMA)
- 356 monolithic column optimized for micro-HPLC could offer a better enantioselectivity
- 357 within a shorter analysis time comparing with the previously reported poly
- 358 (MQD-co-HEMA-co-EDMA) monolithic column used in CEC [28]. For instance, α
- 359 value of ~ 2.91 and R_s value of ~ 8.44 for 3,5-DNB-Leucine enantiomers were
- 360 obtained over 40 minutes in the CEC mode [28], while α value of \sim 4.71 and R_s value

361 of ~ 8.51 for 3,5-DNB-Leucine enantiomers were reached less than 12 minutes in the 362 micro-HPLC mode. These results further demonstrate the great potential of the 363 poly(MQD-co-HEMA-co-EDMA) monolithic column to enantioresolve a wide range 364 of N-derivatized amino acids. 365 When the results in **Table 6** are more closely examined, a similar trend in 366 enantioselectivity for amino acid derivatives in each series was noticed. For instance, 367 α values for 3,5-DClB amino acid enantiomers were in the following rank order: 368 isoleucine > valine > phenylalanine > leucine > tryptophan > methionine > threonine 369 > cysteine > alanine > serine. Lindner et. al. showed that the lipophilicity and 370 bulkiness of the side chain of the analytes may affect the enantiodiscrimination 371 potential of quinidine-based columns [8]. Furthermore, they found that an increase of 372 the size and bulkiness of the side chain leads to an enhancement in the retention of the 373 second eluting enantiomer [8]. Interestingly, a similar phenomenon was observed in 374 this study. For instance, the α -values for some aliphatic amino acid enantiomers as 375 3,5-DClB derivatives increase in the order: serine (hydroxymethyl, $\alpha = 2.18$) < cysteine (thiomethyl, $\alpha = 2.28$) < threonine (1-hydroxyethyl, $\alpha = 2.57$), and alanine 376 377 (methyl, $\alpha = 2.21$) < leucine (isobutyl, $\alpha = 3.12$) < isoleucine (sec.-butyl, $\alpha = 4.24$). 378 In order to study the influence of N-protecting groups on the enantioseparation, eight 379 different N-derivatized leucine derivatives were selected. As shown in **Table 7** and 380 Fig. 3, baseline enantioseparation could be achieved on the poly 381 (MQD-co-HEMA-co-EDMA) column for all eight analytes. Furthermore, the 382 enantioselectivity for the amino acid derivatives decreased with decreasing 383 electrophilic character of the N-protecting groups. This trend could be deduced from 384 the reduction of enantioselectivity obtained by exchanging the strong π -acidic 385 3,5-DNB groups for the weaker π -acidic p-NB and B groups: e.g. α $(3,5-DNB-Leucine) = 4.71 > \alpha \ (p-NB-Leucine) = 1.74 > \alpha \ (B-Leucine) = 1.34.$ 386 387 Lindner et. al. showed that the N-protecting groups could provide a strongly 388 electron-deficient aromatic system for π - π interaction with the quinoline ring of 389 quinidine [8]. The effective π - π interaction increment of the N-protecting groups 390 could improve the enantioselectivity for N-derivatized amino acids [8]. 391 In order to confirm the enantiomer elution order, L-form enantio-enriched 392 3,5-DNB-Methionine and 3,5-DNB-Alanine were used as analytes. As can be seen in 393 Fig. 4, the L-enantiomers were always eluted first. The same enantiomer elution order 394 has been previously observed for 3,5-DNB-Leucine [28] and Fmoc-Leucine [29],

which suggests that the L-enantiomers are more or less excluded from the "binding groove" of the quinidine moiety whereas the D-enantiomers better match the binding sites [8].

398 399

401

402

403

404

405

406

407

408

395

396

397

3.4.1. Chemoselectivity of the poly (MQD-co-HEMA-co-EDMA) monolithic

400 **column**

A major limitation of CSPs is often their intrinsically limited chemoselectivity. In order to evaluate the chemoselectivity of poly(MQD-co-HEMA-co-EDMA) monolithic stationary phases, a mixture of 3,5-DClB-Leucine, 3,5-DClB-Valine, and 3,5-DClB-Tryptophan enantiomers was tested under isocratic conditions in micro-HPLC. **Fig. 5** shows that all three pairs of 3,5-DClB amino acid enantiomers could be completely separated in less than 22.5 minutes. Hence, the poly (MQD-co-HEMA-co-EDMA) monolithic column can be used for the enantioseparation of a multicomponent mixture of *N*-derivatized amino acids in the micro-HPLC mode.

409410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

4. Conclusion

In this research, a capillary monolithic column containing carbamoylated quinidine as chiral selector was re-optimized in order to obtain satisfactory column permeability, selectivity in micro-HPLC. The efficiency and optimized poly (MQD-co-HEMA-co-EDMA) monolithic column showed excellent morphology, good permeability, reproducibility, mechanical and chemical stability and satisfactory chromatographic performance in micro-HPLC. The influence of the organic solvent content, the buffer concentration and the apparent pH of the mobile phase on the retention and enantioseparation of N-derivatized amino acids seems to confirm that both hydrophobic and electrostatic interactions are responsible for the retention of these acidic analytes, while only the latter contribute to enantioselectivity. Based on a comparison of the influence of the type of N-protecting groups and amino acids on enantioseparation, it was deduced that the size and bulkiness of the side chain of amino acids as well as the electrophilic character of the N-protecting groups are likely to affect the enantiodiscrimination potential of the poly(MQD-co-HEMA-co-EDMA)

- 426 monolithic column. The optimized monolithic column was finally applied to the
- enantioseparation of a wide range of N-derivatized amino acids with exceptionally
- high selectivity values and good resolution, especially for 3,5-DNB-amino acids and
- 429 3,5-DClB-amino acids. Good chemoselectivity of the monolithic column for a
- multicomponent mixture of *N*-derivatized amino acids was also observed.

431

432 **5. Acknowledgements**

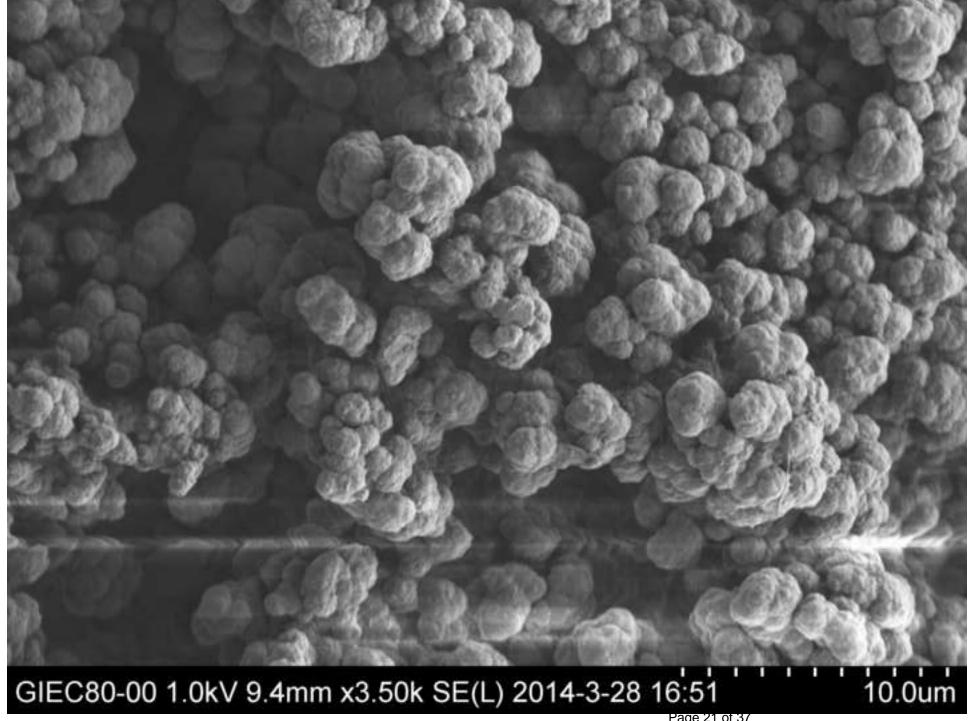
- 433 We gratefully appreciate the financial support from the National Natural Science
- 434 Foundation of China (Grants: 81273477 and 8120249) and the Science and
- 435 Technology Innovation Project of Guangdong Provincial Education Department
- 436 (Grant: 34312014).

437

438 **6. References**

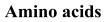
- 439 [1] K. Hamase, A. Morikawa, K. Zaitsu, J. Chromatogr. B 781 (2002) 73.
- 440 [2] S. Kato, Y. Kito, H. Hemmi, T. Yoshimura, J. Chromatogr. B 879 (2011) 3190.
- [3] G. Fisher, N. Lorenzo, H. Abe, E. Fujita, W.H. Frey, C. Emory, M.M. Di Fiore, A.
- 442 D'Aniello, Amino acids 15 (1998) 263.
- 443 [4] H. Brückner, M. Hausch, J. Chromatogr. 614 (1993) 7.
- 444 [5] M. Friedman, C.E. Levin, Amino acids 42 (2012) 1553.
- 445 [6] T.J. de Koning, K. Snell, M. Duran, R. Berger, B.T. Poll-The, R. Surtees, Biochem.
- 446 J. 371 (2003) 653.
- 447 [7] R. Pell, S. Sić, W. Lindner, J. Chromatogr. A 1269 (2012) 287.
- 448 [8] M. Lämmerhofer, W. Lindner, J. Chromatogr. A 741 (1996) 33.
- 449 [9] C. Czerwenka, M. Lämmerhofer, W. Lindner, J. Sep. Sci. 26 (2003) 1499.
- 450 [10] C. Czerwenka, M. Lämmerhofer, W. Lindner, J. Pharmaceut. Biomed, 30 (2003)
- 451 1789.
- 452 [11] Y. Song, T. Funatsu, M. Tsunoda, J. Chromatogr. B 879 (2011) 335.
- 453 [12] M. Lämmerhofer, E. Tobler, E. Zarbl, W. Lindner, F. Svec, J.M.J. Fréchet,
- 454 Electrophoresis 24 (2003) 2986.
- 455 [13] A. Péter, E. Vékes, A. Árki, D. Tourwé, W. Lindner, J. Sep. Sci. 26 (2003) 1125.

- 456 [14] Y. Li, C. Baek, B.W. Jo, W. Lee, Bull. Korean Chem. Soc. 26 (2005) 998.
- 457 [15] I. Ilisz, R. Berkecz, A. Péter, J. Sep. Sci. 29 (2006) 1305.
- 458 [16] X. Yao, T.T. Tan, Y. Wang, J. Chromatogr. A 1326 (2014) 80.
- 459 [17] M. Kato, T. Fukushima, N. Shimba, I. Shimada, Y. Kawakami, K. Lmai, Biomed.
- 460 Chromatogr. 15 (2001) 227.
- 461 [18] K.M. Kacprzak, W. Lindner, J. Sep. Sci. 34 (2011) 2391.
- [19] H. Hettegger, M. Kohout, V. Mimini, W. Lindner, J. Chromatogr. A 1337 (2014)
- 463 85.
- 464 [20] K.H. Krawinkler, E. Gavioli, N.M. Maier, W. Lindner, Chromatographia 58(2003)
- 465 555.
- 466 [21] M. Lämmerhofer, O. Gyllenhaal, W. Lindner, J. Pharmaceut. Biomed. 35 (2004)
- 467 259.
- 468 [22] W. Bicker, M. Lämmerhofer, W. Lindner, J. Chromatogr. A 1035 (2004) 37.
- 469 [23] K. Gyimesi-Forrás, K. Akasaka, M. Lämmerhofer, N.M. Maier, T. Fujita, M.
- Watanabe, N. Harada, W. Lindner, Chirality 17 (2005) S134.
- 471 [24] R. Sardella, A. Carotti, A. Gioiello, A. Lisanti, F. Ianni, W. Lindner, B. Natalini, J.
- 472 Chromatogr. A 1339 (2014) 96.
- 473 [25] A. F. Gargano, M. Kohout, P. Macíková, M. Lämmerhofer, W. Lindner, Anal.
- Bioanal. Chem. 405 (2013) 8027. [26] V. Piette, M. Lämmerhofer, K. Bischoff,
- 475 W. Lindner, Chirality 9 (1997) 157.
- 476 [27] Z. Jiang, N.W. Smith, Z. Liu, J. Chromatogr. A 1218 (2011) 2350.
- 477 [28] M. Lämmerhofer, E.C. Peters, C. Yu, F. Svec, J.M. Fréchet, Anal. chem. 72 (2000)
- 478 4614.
- 479 [29] M. Lämmerhofer, F. Svec, J.M.J. Frechet, W. Lindner, J. Microcolumn Sep. 12
- 480 (2000) 597.
- 481 [30] M. Lämmerhofer, F. Svec, J.M. Fréchet, Anal. Chem. 72 (2000) 4623.
- 482 [31] B.S. Jursic, D. Neumann, Synthetic Commun. 31 (2001) 555.
- 483 [32] M.B. Gawande, P.S. Branco, Green Chem. 13 (2011) 3355.
- 484 [33] W.H. Pirkle, T.C. Pochapsky, J. Am. Chem. Soc. 109 (1987) 5975.
- 485 [34] Q. Zhang, J. Guo, F. Wang, J. Crommen, Z. Jiang, J. Chromatogr. A 1325 (2014)


486	147.
487	[35] Z. Jiang, N.W. Smith, P.D. Ferguson, M.R. Taylor, Anal. Chem. 79 (2007) 1243.
488	[36] V. Piette, M. Lämmerhofer, W. Lindner, J. Crommen, J. Chromatogr. A 987 (2003)
489	421.
490	[37] P.A. Bristow, J.H. Knox, Chromatographia, 10 (1977) 279.
491	[38] M. Lämmerhofer, P. Imming, W. Lindner, Chromatographia, 60 (2004) S13.
492	[39] https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf
493	

493 494	rigure captions
495	Fig. 1. Scanning electron microphotographs of column C5.
496 497	Fig. 2. Structures of amino acids and N-protecting groups.
498	11g. 2. Structures of animo acids and 14 protecting groups.
499	Fig. 3. Enantioseparation of N-derivatized leucine derivatives on the
500	poly(MQD-co-HEMA-co-EDMA) monolithic column. Conditions: column
501	dimensions: 150 mm \times 100 μm I.D.; mobile phase: a). ACN/0.1 M ammonium acetate
502	(80/20, v/v) (apparent pH = 5.3) for all analytes except Fmoc-Leucine, b). ACN/0.1 M
503	ammonium acetate (50/50, v/v) (apparent pH = 5.3) for Fmoc-Leucine; UV detection
504	wavelength: 254 nm; flow rate: 1 μ L/min; injection volume: 20 nL.
505	
506	Fig. 4. Elution order of 3,5-DNB-Methionine and 3,5-DNB-Alanine
507	enantiomers on the poly(MQD-co-HEMA-co-EDMA) monolithic column.
508	Conditions: mobile phase, ACN/0.1 M ammonium acetate (80/20, v/v) (apparent pH =
509	5.3); other conditions as in Fig. 3 .
510	
511	Fig. 5. Enantioseparation of 3,5-DClB-Leucine, 3,5-DClB-Valine and
512	3,5-DClB-Tryptophan. Conditions: flow rate: 0.5 μL/min; samples:
513	3,5-DClB-Leucine (1, 4), 3,5-DClB-Valine (2, 5) and 3,5-DClB-Tryptophan (3, 6);
514	other conditions as in Fig. 4.
515	
516	Table 1. Composition of the polymerization mixtures used for the preparation of
517	poly(MQD-co-HEMA-co-EDMA) monolithic columns and their properties.
518	Conditions: column dimensions: 150 mm \times 100 μm I.D.; mobile phase, ACN/H ₂ O
519	(40/60, v/v); UV detection wavelength: 214 nm; flow rate: 1 μ L/min; injection
520	volume: 20 nL; sample: naphthalene.
521	
522	
523	Table 2. Permeability of the poly(MOD-co-HEMA-co-EDMA) monolithic column

524	a Relative polarity data were obtained from
525	http://virtual.yosemite.cc.ca.us/smurov/orgsoltab.htm; viscosity data of pure solvents
526	were obtained from reference [32].
527	
528	Table 3. Effect of ACN content in the mobile phase on the retention and
529	enantioseparation of <i>N</i> -derivatized amino acids. Conditions: column: 150 mm ×
530	100 μm I.D. poly(MQD-co-HEMA-co-EDMA); mobile phase: mixture of ACN and
531	0.1 M ammonium acetate at various ratios (apparent pH = 5.3); UV detection
532	wavelength: 254 nm; flow rate: 1 μL/min; injection volume: 20 nL.
533	
534	
535	Table 4. Effect of the mobile phase apparent pH on the retention and
536	enantioseparation of N-derivatized amino acids. Conditions: mobile phase,
537	ACN/0.1 M ammonium acetate (80/20, v/v) adjusted to different apparent pH values;
538	other conditions as in Table 3 .
539	
540	
541 542	Table 5. Effect of the buffer concentration on the retention and
543	enantioseparation of <i>N</i> -derivatized amino acids. Conditions: ACN/different
544	concentrations of ammonium acetate $(80/20, \text{ v/v})$ (apparent pH = 5.3); other
545	conditions as in Table 3 .
546	
547	
548	
549	Table 6. Enantioseparation of N-derivatized amino acids. Conditions: mobile
550	phase, ^a ACN/0.1 M ammonium acetate solution (80/20, v/v) (apparent pH = 5.3); ^b
551	ACN/0.1 M ammonium acetate (50/50, v/v) (apparent pH = 5.3); ^c ACN/ 0.1 M
552	ammonium acetate (40/60, v/v) (apparent pH = 5.3); other conditions as in Fig. 3 ; "/":
553	the number of theoretical plates cannot be calculated.
554	
555	Table 7. Comparison of retention factors, selectivity and enantioresolution for
556	different N-derivatized leucine derivatives. Conditions as in Fig. 3.


594	Highlights
595	◆ A carbamoylated quinidine based monolith was prepared for using in
596	micro-HPLC.
597	◆ This monolithic column exhibited great properties for chromatographic
598	performance in micro-HPLC.
599	• A wide range of N-derivatized amino acids were systematically evaluated and
600	successfully enantioresolved.
601	
602	

Page 21 of 37

Fig. 2

N-protecting group

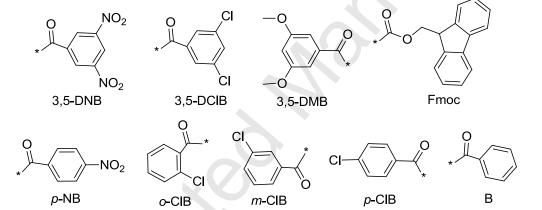
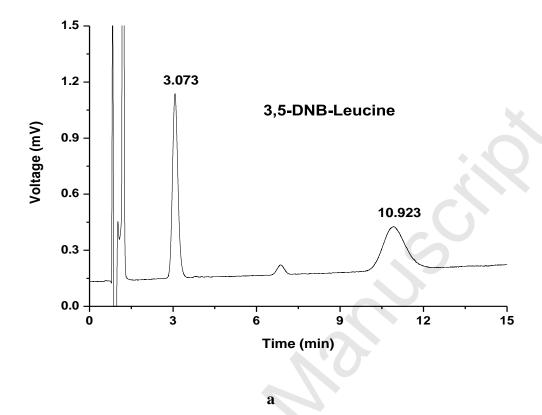
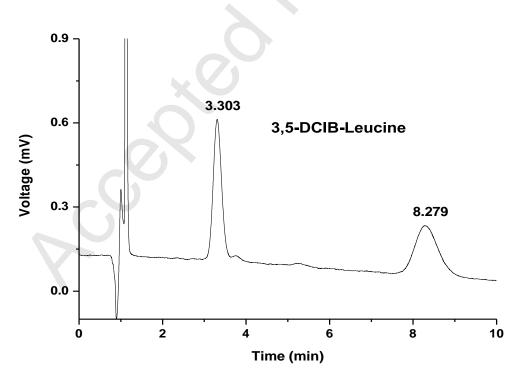
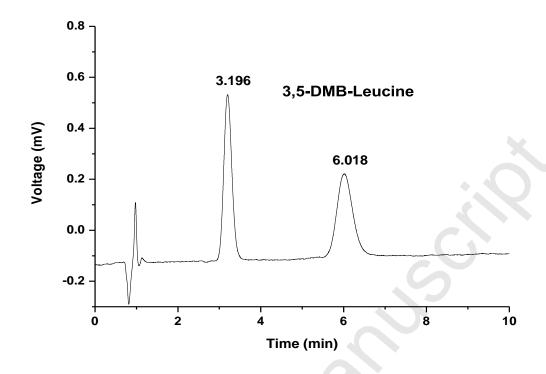
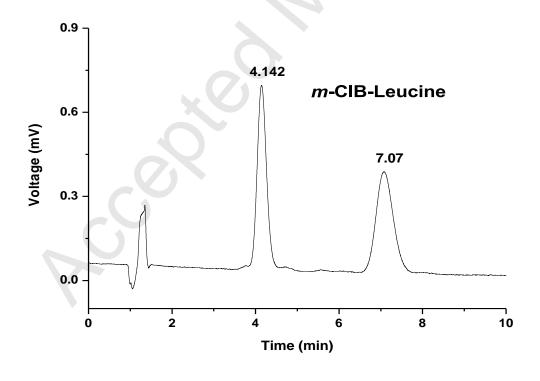
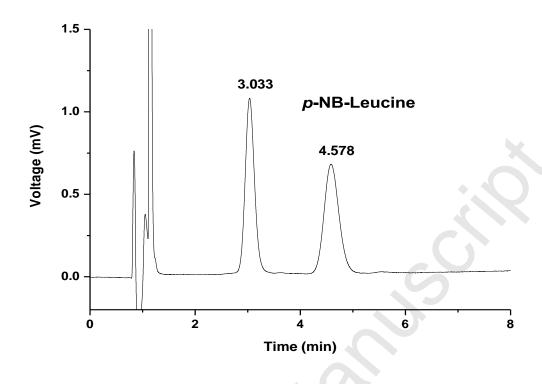
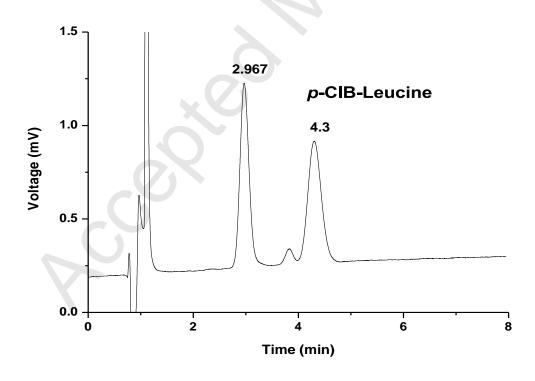
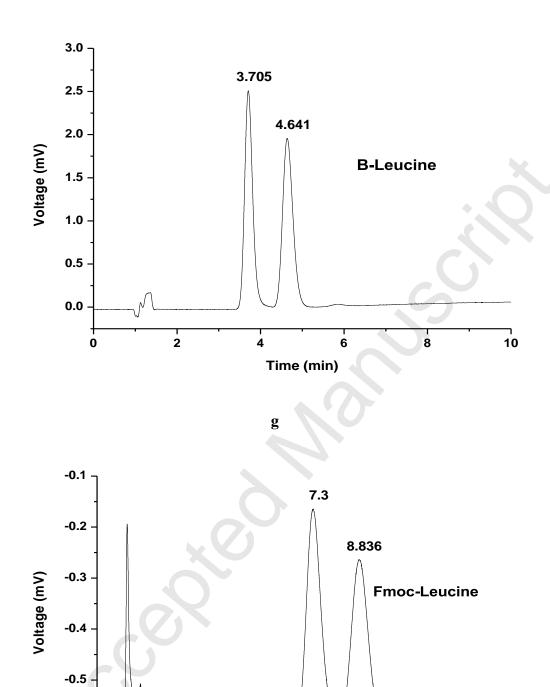





Fig. 3




b


 \mathbf{c}


d

e

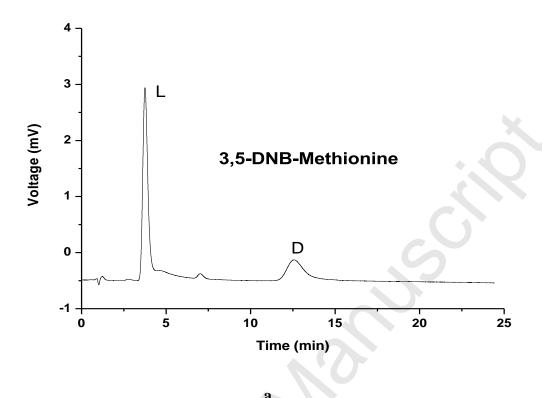
f

h

Time (min)

10

_ 14


12

-0.6

0

2

Fig. 4

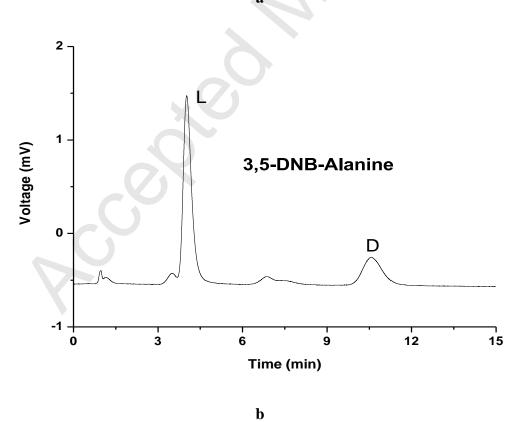


Fig. 5

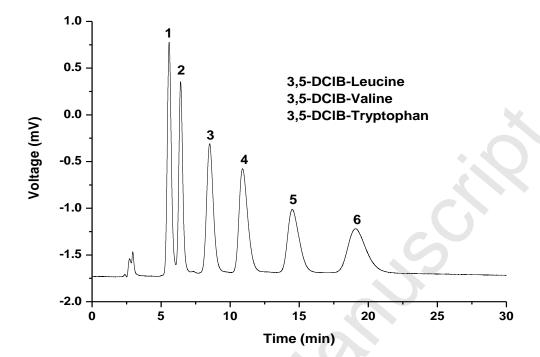


Table 1. Composition of the polymerization mixtures used for the preparation of poly(MQD-co-HEMA-co-EDMA) monolithic columns and their properties.

Column	Monon	ners (%, w/	w)	Porogens (%,w/w)		Monomers: (%, w/w)	Porogens	_ Back-pressure (MPa)	Theoretical plates (m ⁻¹)		
	MQD	HEMA	EDMA	Dodecanol	Cyclohexanol			•	•		
C1	20	52.5	27.5	83.33	16.67	30	70	2.9	20600		
C2	20	52.5	27.5	83.33	16.67	35	65	5.4	24400		
C3	20	52.5	27.5	83.33	16.67	40	60	10.1	21000		
C4	20	55	25	83.33	16.67	35	65	5.6	26500		
C5	20	57.5	22.5	83.33	16.67	35	65	6.2	32000		
C6	20	60.0	20.0	83.33	16.67	35	65	19.2	26200		
C7	20	57.5	22.5	88.33	11.67	35	65	5.8	20500		
C8	20	57.5	22.5	78.33	21.67	35	65	13.1	20700		

Conditions: column dimensions: 150 mm \times 100 μ m I.D.; mobile phase, ACN/H₂O (40/60, v/v); UV detection wavelength: 214 nm; flow rate: 1 μ L/min; injection volume: 20 nL; sample: naphthalene.

Table 2. Permeability of the poly(MQD-co-HEMA-co-EDMA) monolithic column

Mobile	Relative	Viscosity	Permeability
phase	polarity ^[a]	η (×10 ⁻³ Pa·s)[32]	$K (\times 10^{-13} \text{ m}^2)$
ACN	0.460	0.369	1.547
MeOH	0.762	0.544	1.024
Water	1	0.890	0.839

^a Relative polarity data were obtained from http://virtual.yosemite.cc.ca.us/smurov/orgsoltab.htm; viscosity data of pure solvents were obtained from reference [32].

Table 3. Effect of ACN content in the mobile phase on the retention and enantioseparation of N-derivatized amino acids.

	80%							70%						60%				
	k_1	k_2	α	R_s	N_1 /m	<i>N</i> ₂ /m	k_1	k_2	а	R_s	N_1/m	<i>N</i> ₂ /m	k_1	k_2	α	R_s	N_1/m	<i>N</i> ₂ /m
3,5-DNB-Leucine	1.00	4.71	4.71	8.51	16600	8600	1.71	7.70	4.52	9.60	15400	9662	2.56	11.97	4.67	11.40	19400	11700
3,5-DClB-Leucine	1.01	3.15	3.12	6.64	16100	10200	1.88	5.67	3.03	8.04	15100	12377	2.94	9.16	3.11	9.69	20200	14100

Conditions: column: 150 mm \times 100 μ m I.D. poly(MQD-co-HEMA-co-EDMA); mobile phase: mixture of ACN and 0.1 M ammonium acetate at various ratios (apparent pH = 5.3); UV detection wavelength: 254 nm; flow rate: 1 μ L/min; injection volume: 20 nL.

Table 7. Comparison of retention factor, selectivity and enantioresolution of different *N*-derivatized leucine derivatives.

Analyte	k_1	k_2	α	Rs
3,5-DNB-Leucine	1.00	4.71	4.71	8.51
3,5-DClB-Leucine	1.01	3.15	3.12	6.64
3,5-DMB-Leucine	2.35	5.31	2.26	5.30
m-ClB-Leucine	3.35	6.42	1.92	4.94
p-NB-Leucine	2.18	3.80	1.74	3.68
<i>p</i> -ClB-Leucine	2.11	3.51	1.66	3.34
B-Leucine	2.89	3.87	1.34	2.31
Fmoc-Leucine	6.66	8.27	1.24	1.53

Conditions as in **Fig. 3**.

Table 4. Effect of the mobile phase apparent pH on the retention and enantioseparation of N-derivatized amino acids.

	pH 6.3							pH 5.3						pH 4.3				
	k_1	k_2	α	R_s	N_1 /m	<i>N</i> ₂ /m	k_1	k_2	а	R_s	N_1 /m	<i>N</i> ₂ /m	k_1	k_2	а	R_s	N_1 /m	<i>N</i> ₂ /m
3,5-DNB-Leucine	2.26	10.55	4.68	10.52	14600	10600	1.00	4.71	4.71	8.51	16600	8600	0.48	1.91	3.96	4.36	7200	5200
3,5-DClB-Leucine	4.60	14.22	3.09	8.80	12200	11500	1.01	3.15	3.12	6.64	16100	10200	0.49	1.25	2.55	3.01	8100	6400

Conditions: mobile phase, ACN/0.1 M ammonium acetate (80/20, v/v) adjusted to different apparent pH values; other conditions as in **Table 3**.

Table 5. Effect of the buffer concentration on the retention and enantioseparation of N-derivatized amino acids.

	0.15 M							0.10 M						0.05 M				
	k_1	k_2	α	R_s	N_1/m	N_2/m	k_1	k_2	α	R_s	N_1/m	N_2/m	k_1	k_2	α	R_s	N_1/m	N_2/m
3,5-DNB-Leucine	0.77	3.63	4.70	7.75	13600	8600	1.00	4.71	4.71	8.51	16600	8600	1.71	7.88	4.61	10.38	15000	11500
3,5-DClB-Leucine	0.73	2.36	3.22	6.05	14000	10500	1.01	3.15	3.12	6.64	16100	10200	1.70	5.40	3.18	7.94	17900	10600

Conditions: ACN/different concentrations of ammonium acetate (80/20, v/v) (apparent pH = 5.3); other conditions as in **Table 3**.

Table 6. Enantiose paration of N-derivatized amino acids.

Sapmle	k_1	k_2	α	Rs	N_1/\mathbf{m}	N_2 /m
3,5-DNB-Isoleucine ^a	2.56	17.88	6.98	8.74	4500	4200
3,5-DNB-Valine ^a	2.93	16.26	5.55	8.92	7400	5000
3,5-DNB-Tryptophan ^a	4.43	22.00	4.97	7.32	4400	3600
3,5-DNB-Leucine ^a	1.00	4.71	4.71	8.51	16600	8600
3,5-DNB-Phenyalanine ^a	3.27	15.21	4.65	9.95	4900	4200
3,5-DNB-Methionine ^a	3.05	13.24	4.33	8.09	8400	5100
3,5-DNB-Threonine ^a	3.86	14.07	3.64	8.14	6000	6700
3,5-DNB-Cysteine ^a	5.68	19.88	3.50	4.31	2000	1900
3,5-DNB-Alanine ^a	3.55	11.30	3.19	8.06	10700	7400
3,5-DNB-Serine ^a	4.52	14.05	3.11	8.47	10500	8400
3,5-DClB-Isoleucine ^a	1.31	5.58	4.24	8.71	17100	9200
3,5-DClB-Valine ^a	1.39	4.76	3.42	8.74	19200	12800
3,5-DClB-Phenyalanine ^a	2.29	7.65	3.33	8.17	15400	9400
3,5-DClB-Leucine ^a	1.01	3.15	3.12	6.64	16100	10200
3,5-DClB-Tryptophan ^a	2.33	7.13	3.06	6.87	10400	8000
3,5-DClB-Methionine ^a	1.39	4.10	2.95	7.33	13300	13100
3,5-DClB-Threonine ^a	2.15	5.52	2.57	8.00	21000	15400
3,5-DClB-Cystenine ^a	3.41	7.78	2.28	5.22	14000	6300
3,5-DClB-Alanine ^a	1.94	4.30	2.21	6.79	22100	16300
3,5-DClB-Serine ^a	2.70	5.88	2.18	7.55	23800	18800
Fmoc-Isoleucine ^b	9.58	13.50	1.41	2.90	9700	8800
Fmoc-Valine ^b	8.20	11.47	1.40	2.76	9100	8600

Fmoc-Phenylalanine ^b	9.33	11.82	1.27	1.84	7800	7600
Fmoc-Cysteine ^c	13.91	17.61	1.27	1.58	5500	5400
Fmoc-Tryprophan ^b	12.18	15.33	1.26	1.69	7100	6300
Fmoc-Leucine ^b	6.66	8.27	1.24	1.53	6900	6900
Fmoc-Serine ^b	4.43	5.47	1.23	1.56	9100	8300
Fmoc-Methionine ^b	5.82	7.08	1.22	1.43	7700	7500
Fmoc-Alanine ^c	8.40	9.77	1.16	1.38	10100	9900
3,5-DMB-Leucine ^a	2.35	5.31	2.26	5.30	8300	7800
3,5-DMB-Methionine ^a	2.12	4.20	1.98	4.50	9500	8100
3,5-DMB-Alanine ^a	2.06	3.53	1.71	3.98	12700	10300
p-NB-Leucine ^a	2.18	3.80	1.74	3.68	9400	8300
p-NB-Methionine ^a	2.74	4.43	1.62	3.75	11500	10500
p-NB-Threonine ^a	3.93	5.87	1.49	3.91	15500	14700
p-NB-Alanine ^a	2.69	3.84	1.43	3.08	14100	13800
m-ClB-Leucine ^a	3.35	6.42	1.92	4.94	11000	8800
<i>m</i> -ClB-Threonine ^a	3.44	5.72	1.67	4.43	12600	12600
<i>m</i> -ClB-Alanine ^a	3.08	4.67	1.52	3.72	14200	13400
<i>m</i> -ClB-Methionine ^a	2.83	3.70	1.31	2.22	12800	12400
<i>p</i> -ClB-Leucine ^a	2.11	3.51	1.66	3.34	9400	8400
<i>p</i> -ClB-Methionine ^a	3.03	4.62	1.52	3.53	12600	11900
<i>p</i> -ClB-Alanine ^a	2.95	4.02	1.36	2.87	16100	14700
B-Leucine ^a	2.89	3.87	1.34	2.31	11800	10900
B-Methionine ^a	2.81	3.67	1.31	2.17	12500	11700
B-Threonine ^a	4.25	5.32	1.25	2.27	16400	15500

o-ClB-Methionine^a 5.83 6.30 1.08 0.74 /

Conditions: mobile phase, ^aACN/0.1 M ammonium acetate solution (80/20, v/v) (apparent pH = 5.3); ^b ACN/0.1 M ammonium acetate (50/50, v/v) (apparent pH = 5.3); ^c ACN/0.1 M ammonium acetate (40/60, v/v) (apparent pH = 5.3); other conditions as in **Fig. 3**; "/": the number of theoretical plates cannot be calculated.