5 research outputs found

    MathNAS: If Blocks Have a Role in Mathematical Architecture Design

    Full text link
    Neural Architecture Search (NAS) has emerged as a favoured method for unearthing effective neural architectures. Recent development of large models has intensified the demand for faster search speeds and more accurate search results. However, designing large models by NAS is challenging due to the dramatical increase of search space and the associated huge performance evaluation cost. Consider a typical modular search space widely used in NAS, in which a neural architecture consists of mm block nodes and a block node has nn alternative blocks. Facing the space containing nmn^m candidate networks, existing NAS methods attempt to find the best one by searching and evaluating candidate networks directly.Different from the general strategy that takes architecture search as a whole problem, we propose a novel divide-and-conquer strategy by making use of the modular nature of the search space.Here, we introduce MathNAS, a general NAS framework based on mathematical programming.In MathNAS, the performances of the m∗nm*n possible building blocks in the search space are calculated first, and then the performance of a network is directly predicted based on the performances of its building blocks. Although estimating block performances involves network training, just as what happens for network performance evaluation in existing NAS methods, predicting network performance is completely training-free and thus extremely fast. In contrast to the nmn^m candidate networks to evaluate in existing NAS methods, which require training and a formidable computational burden, there are only m∗nm*n possible blocks to handle in MathNAS. Therefore, our approach effectively reduces the complexity of network performance evaluation.Our code is available at https://github.com/wangqinsi1/MathNAS.Comment: NeurIPS 202

    Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation

    Get PDF
    About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species

    Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications

    No full text
    corecore