55 research outputs found

    Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014

    Get PDF
    Phylogeny of the outbreak A and M strains in the context of national and international STM isolates. Genome data analysed in Octavia et al. representing five STM outbreaks in Australia [25]; Kingsley et al. representing ST313 outbreak in Malawi [30]; Leekitcharoenphon et al. representing six STM outbreaks in Denmark [15] and Hawkey et al. representing STM DT135a outbreak in Australia [21] were also included as comparisons and marked as the corresponding study/outbreak. Other branches that are not labelled are background isolates from the above studies; draft genomes from Pang et al. [29] which include five diverse Australian STM isolates; Fu et al. representing Salmonella reference collection A; [28] and other fully sequenced STM genomes available from GenBank including LT2 (Accession No. NC003197), 798 (Accession No. CP003386), DT2 (Accession No. HG326213), DT104 (Accession No. HF937208), 14028S (Accession No. CP001363), SL1344 (Accession No. FQ312003), UK-1 (Accession No. CP002614), T000240 (Accession No. AP011957), U288 (Accession No. CP003836) and ST4/74 (Accession No. CP002487). Bootstrap values if greater than 50 %, are presented on the internal branches. (PPTX 74 kb

    A multi-jurisdictional outbreak of Salmonella Typhimurium infections linked to backyard poultry—Australia, 2020

    Get PDF
    Zoonotic salmonellosis can occur either through direct contact with an infected animal or through indirect contact, such as exposure to an infected animal's contaminated environment. Between May and August 2020, a multi-jurisdictional outbreak of Salmonella Typhimurium (STm) infection due to zoonotic transmission was investigated in Australia. In total, 38 outbreak cases of STm with a median age of 5 years were reported. Epidemiological investigation showed contact with live poultry to be a common risk factor with most cases recently purchasing one-week old chicks from produce/pet stores. Traceback investigation of cases identified 25 product/pet stores of which 18 were linked to a single poultry breeder farm. On farm environmental sampling identified the same STm genotype as identified in cases. Whole genome sequencing of both environmental and human outbreak isolates found them to be highly related by phylogenetic analysis. This investigation describes the first documented widespread zoonotic salmonellosis outbreak in Australia attributed to backyard poultry exposure and identified potential risk factors and prevention and control measures for future outbreaks. Prevention of future outbreaks will require an integrated One Health approach involving the poultry industry, produce/pet store owners, animal healthcare providers, public health and veterinary health agencies and the public

    Burkholderia lata Infections from Intrinsically Contaminated Chlorhexidine Mouthwash, Australia, 2016

    Get PDF
    "Emerging Infectious Diseases is an open access journal in the public domain"Burkholderia lata was isolated from 8 intensive care patients at 2 tertiary hospitals in Australia. Whole-genome sequencing demonstrated that clinical and environmental isolates originated from a batch of contaminated commercial chlorhexidine mouthwash. Genomic analysis identified efflux pump–encoding genes as potential facilitators of bacterial persistence within this biocide

    Whole Genome Sequencing of Australian Candida glabrata Isolates Reveals Genetic Diversity and Novel Sequence Types

    Get PDF
    Candida glabrata is a pathogen with reduced susceptibility to azoles and echinocandins. Analysis by traditional multilocus sequence typing (MLST) has recognized an increasing number of sequence types (STs), which vary with geography. Little is known about STs of C. glabrata in Australia. Here, we utilized whole genome sequencing (WGS) to study the genetic diversity of 51 Australian C. glabrata isolates and sought associations between STs over two time periods (2002–2004, 2010–2017), and with susceptibility to fluconazole by principal component analysis (PCA). Antifungal susceptibility was determined using Sensititre YeastOneTM Y010 methodology and WGS performed on the NextSeq 500 platform (Illumina) with in silico MLST STs inferred by WGS data. Single nucleotide polymorphisms (SNPs) in genes linked to echinocandin, azole and 5-fluorocytosine resistance were analyzed. Of 51 isolates, WGS identified 18 distinct STs including four novel STs (ST123, ST124, ST126, and ST127). Four STs accounted for 49% of isolates (ST3, 15.7%; ST83, 13.7%; ST7, 9.8%; ST26, 9.8%). Split-tree network analysis resolved isolates to terminal branches; many of these comprised multiple isolates from disparate geographic settings but four branches contained Australian isolates only. ST3 isolates were common in Europe, United States and now Australia, whilst ST8 and ST19, relatively frequent in the United States, were rare/absent amongst our isolates. There was no association between ST distribution (genomic similarity) and the two time periods or with fluconazole susceptibility. WGS identified mutations in the FKS1 (S629P) and FKS2 (S663P) genes in three, and one, echinocandin-resistant isolate(s), respectively. Both mutations confer phenotypic drug resistance. Twenty-five percent (13/51) of isolates were fluconazole-resistant (MIC ≥ 64 μg/ml) of which 9 (18%) had non wild-type MICs to voriconazole and posaconazole. Multiple SNPs were present in genes linked to azole resistance such as CgPDR1 and CgCDR1, as well as several in MSH2; however, SNPs occurred in both azole-susceptible and azole-resistant isolates. Although no particular SNP in these genes was definitively associated with resistance, azole-resistant/non-wild type isolates had a propensity to harbor SNPs resulting in amino acid substitutions in Pdr1 beyond the first 250 amino acid positions. The presence of SNPs may be markers of STs. Our study shows the value of WGS for high-resolution sequence typing of C. glabrata, discovery of novel STs and potential to monitor trends in genetic diversity. WGS assessment for echinocandin resistance augments phenotypic susceptibility testing

    Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prospective typing of <it>Salmonella enterica </it>serovar Typhimurium (STM) by multiple-locus variable-number tandem-repeat analysis (MLVA) can assist in identifying clusters of STM cases that might otherwise have gone unrecognised, as well as sources of sporadic and outbreak cases. This paper describes the dynamics of human STM infection in a prospective study of STM MLVA typing for public health surveillance.</p> <p>Methods</p> <p>During a three-year period between August 2007 and September 2010 all confirmed STM isolates were fingerprinted using MLVA as part of the New South Wales (NSW) state public health surveillance program.</p> <p>Results</p> <p>A total of 4,920 STM isolates were typed and a subset of 4,377 human isolates was included in the analysis. The STM spectrum was dominated by a small number of phage types, including DT170 (44.6% of all isolates), DT135 (13.9%), DT9 (10.8%), DT44 (4.5%) and DT126 (4.5%). There was a difference in the discriminatory power of MLVA types within endemic phage types: Simpson's index of diversity ranged from 0.109 and 0.113 for DTs 9 and 135 to 0.172 and 0.269 for DTs 170 and 44, respectively. 66 distinct STM clusters were observed ranging in size from 5 to 180 cases and in duration from 4 weeks to 25 weeks. 43 clusters had novel MLVA types and 23 represented recurrences of previously recorded MLVA types. The diversity of the STM population remained relatively constant over time. The gradual increase in the number of STM cases during the study was not related to significant changes in the number of clusters or their size. 667 different MLVA types or patterns were observed.</p> <p>Conclusions</p> <p>Prospective MLVA typing of STM allows the detection of community outbreaks and demonstrates the sustained level of STM diversity that accompanies the increasing incidence of human STM infections. The monitoring of novel and persistent MLVA types offers a new benchmark for STM surveillance.</p> <p>A part of this study was presented at the MEEGID Ă— (Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) Conference, 3-5 November 2010, Amsterdam, The Netherlands</p

    Biosurveillance of emerging biothreats using scalable genotype clustering

    Get PDF
    Developments in molecular fingerprinting of pathogens with epidemic potential have offered new opportunities for improving detection and monitoring of biothreats. However, the lack of scalable definitions for infectious disease clustering presents a barrier for effective use and evaluation of new data types for early warning systems. A novel working definition of an outbreak based on temporal and spatial clustering of molecular genotypes is introduced in this paper. It provides an unambiguous way of clustering of causative pathogens and is adjustable to local disease prevalence and availability of public health resources. The performance of this definition in prospective surveillance is assessed in the context of community outbreaks of food-borne salmonellosis. Molecular fingerprinting augmented with the scalable clustering allows the detection of more than 50% of the potential outbreaks before they reach the midpoint of the cluster duration. Clustering in time by imposing restrictions on intervals between collection dates results in a smaller number of outbreaks but does not significantly affect the timeliness of detection. Clustering in space and time by imposing restrictions on the spatial and temporal distance between cases results in a further reduction in the number of outbreaks and decreases the overall efficiency of prospective detection. Innovative bacterial genotyping technologies can enhance early warning systems for public health by aiding the detection of moderate and small epidemics.8 page(s

    Persistent Salmonella enterica serovar Typhi sub-populations within host interrogated by whole genome sequencing and metagenomics.

    No full text
    Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever and, in some cases, chronic carriage after resolution of acute disease. This study examined sequential isolates of S. Typhi from a single host with persistent asymptomatic infection. These isolates, along with another S. Typhi isolate recovered from a household contact with typhoid fever, were subjected to whole genome sequencing and analysis. In addition, direct sequencing of the bile fluid from the host with persistent infection was also performed. Comparative analysis of isolates revealed three sub-populations of S. Typhi with distinct genetic patterns. Metagenomic sequencing recognised only two of the three sub-populations within the bile fluid. The detection and investigation of insertion sequences IS10R and associated deletions complemented analysis of single nucleotide polymorphisms. These findings improve our understanding of within-host dynamics of S. Typhi in cases of persistent infection and inform epidemiological investigations of transmission events associated with chronic carriers

    Novel Salmonella enterica Serovar Typhimurium Genotype Levels as Herald of Seasonal Salmonellosis Epidemics

    No full text
    We examined the population dynamics of Salmonella enterica serovar Typhimurium during seasonal salmonellosis epidemics in New South Wales, Australia, during 2009–2016. Of 15,626 isolates, 5%–20% consisted of novel genotypes. Seasons with salmonellosis epidemics were associated with a reduction in novel genotypes in the preceding winter and spring
    • …
    corecore