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Developments in molecular fingerprinting of pathogens with epidemic potential have offered new oppor-
tunities for improving detection and monitoring of biothreats. However, the lack of scalable definitions
for infectious disease clustering presents a barrier for effective use and evaluation of new data types
for early warning systems. A novel working definition of an outbreak based on temporal and spatial clus-
tering of molecular genotypes is introduced in this paper. It provides an unambiguous way of clustering
of causative pathogens and is adjustable to local disease prevalence and availability of public health
resources. The performance of this definition in prospective surveillance is assessed in the context of
community outbreaks of food-borne salmonellosis. Molecular fingerprinting augmented with the scal-
able clustering allows the detection of more than 50% of the potential outbreaks before they reach the
midpoint of the cluster duration. Clustering in time by imposing restrictions on intervals between collec-
tion dates results in a smaller number of outbreaks but does not significantly affect the timeliness of
detection. Clustering in space and time by imposing restrictions on the spatial and temporal distance
between cases results in a further reduction in the number of outbreaks and decreases the overall effi-
ciency of prospective detection. Innovative bacterial genotyping technologies can enhance early warning
systems for public health by aiding the detection of moderate and small epidemics.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Prospective infectious disease surveillance requires the on-
going collection and monitoring of infection-specific data and re-
lated information such as infectious disease counts or syndromic
data. The goal of surveillance is to detect and then prevent and
control outbreaks in real-time. For some infectious diseases, one
or two confirmed cases are sufficient to raise an alarm (e.g. SARS,
meningococcal disease). However, for many types of infections,
detection requires clustering of the data based on similarity of iso-
lates. A broad range of statistical techniques have been applied in
order to improve the performance of prospective surveillance
and have been extensively reviewed elsewhere [1–4]. In its sim-
plest form, a statistical surveillance method consists of a process
control algorithm for a single time-dependent variable. More com-
plex methods involve the analysis of multi-variate spatio-temporal
data sets. These early warning systems can identify large disease
epidemics but there are usually significant delays and low sensitiv-
ity in detecting moderate and small outbreaks. This is due to the
ll rights reserved.
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high level of noise in laboratory and syndromic surveillance data
[4]. Better surveillance often allows the size of outbreaks to be lim-
ited as a consequence of public health interventions, as more out-
breaks are detected and controlled at an earlier stage and fewer
continue to a large size [5].

The molecular fingerprinting of pathogens with epidemic po-
tential offers new opportunities for detecting and confirming clus-
ters of community and hospital-acquired infections [6–8]. It
involves rapid subtyping of isolates from infected patients for the
purpose of strain discrimination. Although the discriminatory
power varies according to the subtyping method, molecular geno-
typing is often useful to identify sources and routes of transmission
[9]. However, identifying patients that share the same genotype is
not enough to uniquely provide an operational definition for an
outbreak. In practice, the decision to proceed with a public health
intervention will depend on the severity, communicability and lo-
cal epidemiology of the disease as well as on the availability of
public health resources to conduct investigations and institute cor-
rective measures [2,10]. It is therefore critical to have an outbreak
definition (in the absence of epidemiological information) that
optimizes the limited resources of public health practitioners while
preventing further spread [11].
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Fig. 1. Sketch depicting examples of temporal (top panel) and spatial (bottom panel) genotyping clusters. The top panel shows two temporal clusters defined as a maximal set
of at least five counts with consecutive cases occurring at most 2 days from each other. The bottom panel shows two spatial clusters defined as a maximal set of at least five
counts forming a spanning tree with edges at most 5 km long.
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One setting that allows in-depth study of the impact of cluster
definitions on prospective monitoring of bacterial genotypes is sur-
veillance of Salmonella enterica serovar Typhimurium (STM) infec-
tions [12,13]. Rapid genotyping of STM has recently been widely
used to characterize salmonella outbreaks. In particular, multilocus
variable-number tandem repeat analysis (MLVA) of STM is a stable,
easily implemented method and its results can be shared between
laboratories over the Internet [14,15]. However, evidence about
performance and timeliness of STM cluster detection systems re-
mains limited [16].

To address these generic deficiencies, we introduce a working
outbreak definition based upon temporal and spatial clustering of
genotypes that provides unambiguous clustering of isolates and
that can be tuned to accommodate the requirements and resources
available for outbreak investigations. We compare this definition
against statistical and epidemiologically confirmed clusters and
evaluate its performance in prospective surveillance.

2. Methods and data

2.1. Genotype cluster definitions

We define a genotyping cluster as a maximal set of at least N iso-
lates that share the same (or closely related) genotype, among a set
of isolates from infected patients, each with an associated date and
location (e.g. collection date and patient’s address). To account for
clustering in space and time, we specify:

Temporal cluster: A genotyping cluster, for which the time
difference between any two consecutive cases is at most t days
(see top panel in Fig. 1). The limit of t = 0 corresponds to clusters
that last one day.

Spatial cluster: A genotyping cluster, for which locations of all
cases are connectable by a spanning tree (a graph connecting a
set of nodes [i.e. case locations] without any cycles) with all edges
no more than d kilometers long (see bottom panel in Fig. 1). The
limit of d = 0 indicates a cluster occurring in one location.

Spatio-temporal cluster: A combined temporal and spatial clus-
ter characterized by parameters t and d.

These spatial and temporal cluster definitions satisfy two impor-
tant properties. First, they provide a unique way of clustering cases
that is independent of the order in which the isolates are consid-
ered. This property guarantees that any two cases assigned to a
cluster at a given time will remain in one cluster in the presence
of additional cases. This makes it possible to search, retrospectively,
for clusters (for given parameters N, t and d) in historical data, com-
pute the number of clusters and determine how early they would
have been detected, prospectively. In this way, one can adjust fu-
ture values of N, t and d according to prospective surveillance needs
and availability of public health resources. For simplicity we have
assumed that the parameters N, t and d are independent of geno-
type. Second, except for the limits t = 0 and d = 0, the duration
and area of a cluster is not prescribed, making definitions scalable.
A more naive outbreak definition as a set of at least N isolates of a
given genotype occurring within a fixed duration and/or fixed area
does not fulfill these properties. Furthermore, definitions with fixed
duration are obviously not appropriate for prospective surveillance.

An algorithm that implements the working definitions of out-
breaks described in this paper has three steps:



Fig. 2. Size, duration and surface area of genotyping clusters with N = 5. Clusters are ordered by size.
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I. Compute temporal and/or spatial distance of each new iso-
late with existing same-genotype isolates.

II.
(a) If an existing isolate is found for which temporal and/or

spatial distance is smaller or equal to t and/or d then the
new isolate joins the set of this existing isolate.

(b) If more than one isolate is found for which temporal and/or
spatial distance is smaller or equal to t and/or d and they
belong to different sets then the sets merge into one.

(c) When no isolates have been found for which temporal and/
or spatial distance is smaller or equal to t and/or d then the
new isolate forms a new set.
1 p� value ¼ Rupþ1
Rþ1 , R = number of randomly generated replicas and Rup = number of

randomly generated replicas with higher maximum likelihood ratio than potential
cluster.
III. A set becomes a cluster the moment it reaches N or more
isolates.

The clustering algorithm is easy to implement and requires
short computational times, since its order does not depend on
the number of locations or dates under surveillance. Also, its accu-
racy is independent of the number of cases under consideration.

2.1.1. Prospective surveillance
The performance of these outbreak definitions in a prospective

surveillance system can be tested by computing how long it would
take to detect each cluster in real-time using a given outbreak def-
inition. Following the algorithm described above, the detection
date of an outbreak is simply the date at which a set of same-geno-
type isolates that fulfil the appropriate spatio-temporal restrictions
reaches N or more isolates and becomes a cluster (step III).

2.2. Spatio-temporal scan statistic

An alternative and more complex way to account for time and
space correlations within a set of disease counts (and potentially
within a genotyping cluster) is to use a statistical method, such
as the space–time permutation scan statistic [17]. In this method,
a cluster is defined as the region in space and time where the prob-
ability of an incident case occurring is higher inside than outside.
Expected values are estimated from existing counts (for a given
day and location the expected counts are proportional to all the
cases that occurred in that location multiplied by all the cases that
occurred in that day), and the underlying probability function is
the hypergeometric distribution. A cluster is considered to be sta-
tistically significant when its p-value1 is smaller than a certain
threshold. Many statistical methods have been suggested in the lit-
erature for the detection of disease clusters. Among the methods
that consider spatio-temporal clustering, we have chosen scan sta-
tistics as our ‘‘representative” statistical method because: (a) it is
one of the most popular; (b) it can be fitted into a general cumulative
sum framework [18]; and (c) it has been implemented in a publicly
available software package used in many surveillance publications
before (see http://www.satscan.org/references.html).

2.3. MLVA genotyping

Molecular fingerprint of a given pathogen is a set of marker
scores displayed by an isolate obtained from a patient which is
used for assessment of epidemiological relatedness among bacte-
rial isolates. Different techniques have been applied to obtained
fingerprints of different pathogens [19].

The most common methods used for the subtyping of S. enterica
Typhimurium (STM) are phage typing (PT), pulse-field gel electro-
phoresis (PFGE) and more recently multiple-locus variable-number
tandem-repeats analysis (MLVA) [12,20]. MLVA is based on the
detection of short sequence repeats that vary in copy number in
the microbial genome at various loci. MLVA detects polymor-
phisms at five different sites in the genome. Four regions of detec-
tion are on the bacterial chromosome and one is located on the
serotype specific plasmid pSLT. MLVA has high discriminatory
power within clonal species and appears to be more rapid and
more amenable to standardization than pulse-field gel electropho-
resis for both surveillance and outbreak investigations of STM [13].

http://satscan.org/references.html


Fig. 3. Temporal and spatial characteristics of largest STM genotyping clusters. Top panel: time series of the 3 largest genotyping clusters. Bottom panel: spatial range of the 5
largest genotyping clusters measured as percentage of pairs of counts, in which patients are found at different minimum distances from each other. A point (x,y) in this graph
records the percentage y of pairs of same MLVA-type isolates in which patients are found at a distance of x km or more from each other (for the whole period of sampling).

2 It is possible to relax the condition of identical MLVA types in the definition o
genotyping cluster to account for genotypes that are genetically close and that may
have undergone a mutation during an outbreak.
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Epidemiological concordance for molecular multilocus typing pat-
terns has been demonstrated [21].

2.3.1. Dataset
In Australia, all salmonella isolates obtained from patients with

gastrointestinal illness are serotyped by state reference laborato-
ries. The Centre for Infectious Diseases and Microbiology Labora-
tory Services at the Institute of Clinical Pathology and Medical
Research (ICPMR), Sydney West Area Health Service and the
Queensland Health Forensic & Scientific Services (QHFSS) are state
reference facilities for enteric pathogens for New South Wales and
Queensland, respectively. Since 2006, all confirmed STM isolates
which were characterized in these two laboratories have been fur-
ther subtyped using MLVA as part of state surveillance. Phage typ-
ing (PT) was provided by the Microbiological Diagnostic Unit at the
University of Melbourne.

The dataset used in this paper consists of STM isolates from hu-
mans referred to the ICPMR and QHFSS between 23-October-2006
and 31-March-2007. Each isolate has an associated MLVA type, PT
type, specimen collection date and postcode of patient’s address.
ICPMR and QHFSS at the time of testing were using different con-
ventions for translating the number of repeats in STM MLVA loci
into a MLVA genotype number.
3. Results

3.1. Salmonella Typhimurium clusters

Our genotyping cluster definitions were applied to MLVA geno-
typing data for STM isolates from humans referred to the two state
reference laboratories during the study period. There were 816 iso-
lates, displaying 226 different MLVA profiles, the most common of
which was found in 67 or 8.2% of isolates. Each isolate had an asso-
ciated specimen collection date and postcode of patient’s address.
Distances between cases were defined as those between the geo-
graphical centers of the patient’s postcode areas. For simplicity,
only identical MLVA profiles were considered as part of the same
cluster2. We refer to cluster size as the number of isolates or cases
(counts) within the cluster, cluster duration as the number of days
between (and including) the first and last collection dates in the
cluster and, cluster area as the sum of areas of the patients’ post-
codes plus those of the enclosed postcodes.

Fig. 2 shows the sizes, durations, and areas of the 36 genotyping
f
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clusters each containing at least five isolates (N = 5). The average
cluster size was 15 cases and the median 9. Their durations ranged
from 7 (MLVA 01-03-19-13-03) to 149 days (MLVA 01-02-15-05-
08 and 02-09-20-00-07), and averaged 96. Their mean area was
6839 km2, representing 0.27% of the total area of New South Wales
and Queensland. MLVA 02-09-21-00-07 cluster occupied the
smallest area (0.003% of total) while MLVA 01-24-10-02-03 spread
throughout approximately 3% of the whole area. Many different
MLVA clusters shared the same phage type (9 and 8 clusters shared
PT135a and PT170, respectively). The majority of MLVA profiles ap-
pear ‘‘endemically” throughout the 6-month study period, with
occasional clusters lasting 3–40 days. Some MLVA types also have
a wide geographical spread, with significant differences in tempo-
ral and spatial distributions among genotypes (see Fig. 3).

3.1.1. Temporal clusters
In view of the temporal structure of the genotyping clusters, it

makes sense to describe STM outbreaks, for prospective surveil-
lance, using our temporal cluster definition. For instance, if an out-
break is defined as a maximal set of at least 5 isolates with the
same MLVA profile, each of which collected within up to 1 day of
the next (t = 1), there were 12 outbreaks with a mean of 12 cases
each, lasting an average of 4 days and occupying on average
514 km2 (Table 1). Variation with t in the number, size, duration
and area of temporal clusters, for which N = 5, is shown in the
top panel of Fig. 4. For sensitivity analyses, the range t = 0–7, is
most interesting; the number of clusters varies (as a proportion
of 36, the clusters detected when t was unlimited) from 4 or
�10% when t = 0, to 29 or 80% when t = 7. The mean size of clusters
does not vary significantly with t, although that of larger outbreaks
is less with lower t values. Both the average duration and areas of
clusters fall sharply with smaller t values.

For prospective surveillance, when information about epidemi-
ological links between patients is lacking, the value of t can be cho-
sen according to the number of expected future outbreaks. The
more outbreaks we are willing to deal with (assuming, for exam-
ple, that the first 5 patients whose isolates share the same MLVA
profile will be investigated) the larger the t value for a given N. This
tuning of our model parameters is the equivalent of the selection of
alarm thresholds used in standard prospective surveillance sys-
tems (see e.g. Reis et al. [22]). In these statistical models, the
Table 1
Example of STM temporal genotyping clusters with N = 5 and t = 1 (upper section) and ST

Cluster Genotype Size
(counts)

Duration
(days)

Temporal clusters 1 01-03-20-04-06* 39 5
2 02-06-20-14-02** 24 10
3 01-04-13-05-08* 16 3
4 02-06-20-14-02** 10 5
5 01-02-04-01-03** 8 3
6 02-05-20-14-02** 8 4
7 02-06-20-14-02** 7 4
8 01-05-17-03-08* 7 5
9 01-02-04-01-03** 6 3
10 01-05-17-03-08* 6 4
11 01-01-19-14-03** 5 2
12 01-04-05-13-03** 5 3

Spatio-temporal clusters 1 01-03-20-04-06* 29 5
2 01-04-13-05-08* 14 3
3 02-06-20-14-02** 7 5

* Identified at ICPMR (NSW).
** Identified at QHFSS (Qld).
a The space–time permutation scan statistic method [17] as applied retrospectively w

included fractions of genotyping clusters together with isolated with isolates with diffe
result in statistically significant clusters.

b A total of five epidemiological investigations took place during the period under con
threshold is typically adjusted to allow for given average false
alarm rates. In our model, the parameters controlling the number
of ‘‘alarms” have a direct relationship with the size, duration and
area of the outbreaks. The values of N and t could also be adjusted
to account for seasonal patterns, local prevalence or differences be-
tween genotypes, but that is beyond the scope of this paper.

3.1.2. Spatio-temporal clusters
Limiting the distance between cases in the functional definition

of an outbreak may also be useful, particularly for genotypes with
wide geographical distribution. This is done by applying the defini-
tion of a spatio-temporal cluster. Examples of STM spatio-temporal
genotyping clusters with N = 5, t = 1 and d = 5 are shown in Table 1.
The bottom panel of Fig. 4 shows changes in the number, size,
duration and area of potential outbreaks, with variations in d for
spatio-temporal genotyping clusters with N = 5 and t = 2. Similar
results (not shown) are observed for other values of t. Like t, d
can be varied according to the number of future investigations
public health officers are able to perform.

3.1.3. Scan statistic clusters
The space–time permutation scan statistic method was applied

to our salmonella data set retrospectively with default values for
bonds on cluster size (50% of population at risk and 50% of study
period). The spatial scanning window was circular and only non-
geographically overlapping clusters with p-value < 0.05 were con-
sidered. Calculations were performed using the freely available
software SatScan [23]. When clustering the entire data set with-
out distinguishing between genotypes, 4 clusters were found.
Two of them correspond to genotyping clusters 01-03-20-04-06
(29 isolates out of 30) and 01-04-13-05-08 (all 14 isolates). The
other two clusters are 75% (3 isolates out of 4) associated with
genotype 01-03-19-13-03 and 33% (12 out of 36 isolates) associ-
ated with genotype 02-06-20-14-02. This latter cluster included
17 different genotypes. The calculation was repeated using phage
types as covariates. This found 3 clusters that roughly coincide
with the first 3 clusters found without phage type information,
plus another cluster containing 8 isolates, which included 4 dif-
ferent genotypes. Computations using MLVA types as covariates
or as individual data sets did not result in statistically significant
clusters.
M spatio-temporal genotyping clusters with N = 5, t = 1 and d = 5 (lower section)

Area
(km2)

Phage types Confirmed by scan
statistica

Confirmed by epi.
investigb

184.19 9, 12 Yes Yes
735.91 197 Yes Yes
626.14 170 Yes Yes
165.74 197
795.69 U302, 186, 35
81.64 197 Yes
228.30 197
86.33 135a Yes
183.31 UNK, 35, U302, 29, RDNC
184.70 135a
2,792.20 RDNC, 44
104.31 135a, RDNC Yes

98.62 9 Yes Yes
314.64 170 Yes Yes
37.81 197 Yes Yes

ithout distinguishing between genotypes. In most cases, the scan statistic clusters
rent genotypes. Computations applied to sets of same-MLVA type isolates did not

siderations.



Fig. 4. Sensitivity of potential number of outbreaks, their mean size, mean duration, and mean surface area: with changes in t for STM temporal genotyping clusters with
N = 5 (top panel) and with changes in d for STM spatio-temporal genotyping clusters with N = 5, t = 2 (bottom panel) .A 100% value corresponds to the case of unlimited t and
d, respectively.
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As it can be seen in Table 1, the space–time permutation scan
statistics detects clusters that are similar to all of the genotyping
spatio-temporal clusters with N = 5, t = 1, d = 5, but not all of the
corresponding genotyping temporal-only clusters. This is to be ex-
pected since the space–time permutation scan statistic method
will detect a cluster when there is a high proportion of excess cases
in a given area with respect to the surrounding areas, during a spe-
cific period of time, while this is not necessarily the case for all of
the temporal-only clusters.

3.2. Prospective surveillance of genotyping clusters

Next, we address the question of timeliness of detection by
computing the proportion of genotyping clusters detected within
a given time (expressed as a fraction of cluster duration) for differ-
ent values of N, t and d. Timely outbreak detection was best when
N = 3, 4 or 5, resulting in identification of 58, 44 or 36 clusters,
respectively, of which more than 50% were detected before reach-
ing the peak or midpoint of the cluster duration.

Imposing restrictions on intervals between collection dates,
without restricting distances between cases, does not significantly
affect the timeliness of detection, particularly for values of N > 2
(see upper row in Fig. 5). For instance, temporal clusters with
N = 5 and t = 1 were detected, on average, 2 days after identifica-
tion of the first case and had a mean duration of 4 days. Similarly,
outbreaks defined using N = 5 and t = 8 were detected, on average,
within less than 10 days of the first case and lasted, on average, 18
days. The differences in timeliness of detection among spatio-tem-
poral clusters is slightly larger, particularly for N = 2. In general,
clustering in both space and time decreased the overall efficiency
of prospective detection (see lower row in Fig. 5). For example,
the 3 spatio-temporal clusters with N = 5, t = 1 and d = 5 lasted 5,
3, and 5 days and were detected at days 4, 2, and 4, respectively.

4. Discussion

Like many other infectious diseases, salmonellosis occurs as a
mixture of temporally and/or geographically clustered cases, super-
imposed on non-clustered endemic cases. This is also the case for
each MLVA type separately, which raises the question of refining
outbreak definition beyond genotyping groups. For example, Torp-
dahl et al. [13] defined a salmonella outbreak as at least five isolates
with the same MLVA type found within a 4-week period. This def-
inition can be ambiguous, since it does not provide a unique way of
clustering cases and, furthermore, cannot be used in prospective
surveillance. Other frequently used tools for identification of dis-
ease clusters rely on statistical methods that detect regions in space
and/or time where disease counts are significantly higher than ex-
pected. Review and performance of such algorithms for outbreak
detection in automated syndromic surveillance systems can be



Fig. 5. Percentage of genotyping clusters as a function of their detection time (expressed as a fraction of cluster duration). Upper row: detection of temporal genotyping
clusters with t = no limit, 1, 8 for N = 2(left), N = 5(centre), and N = 10(right); lower row: detection of spatio-temporal genotyping clusters with (t,d) = (no limit,no limit),
(t,d) = (1,5), (t,d) = (8,5) for N = 2 (left), N = 5 (centre), and N = 10 (right); the total numbers of clusters for each definition appear in parenthesis within the legend.
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found in [22,24]. One statistical method, which has been commonly
(and often successfully) used in syndromic and population health
surveillance, is scan statistic [25,26]. However, this methodology
does not guarantee that any two cases assigned to a cluster at a gi-
ven time will remain in the same cluster when new cases are added,
since the latter may change the likelihood ratios, and it is much
slower to run. More importantly, statistical methods may fail to
identify clusters when applied to the highly specific sets of same-
genotype isolates (as is the case with same-MLVA-type STM sets)
due to low signal to noise ratios. In contrast, our temporal and spa-
tio-temporal cluster definitions, based on molecular fingerprints of
bacteria with epidemic potential, are unambiguous, scalable and
generalizable. They provide a methodology by which the number
of clusters identified can be varied according to resources available
and are applicable to any new molecular technologies used in pub-
lic health surveillance. In our reference laboratories, the average
turn-around time for MLVA genotyping is between 3 and 7 days
after identification of STM which enables more rapid public health
investigations. Another important benefit of molecular fingerprint-
ing of pathogens is that it can be easily standardized, allows the
comparison of strains across many jurisdictions (states of Queens-
land and New South Wales, and potentially all Australian States
and Territories, in our case) and subsequent clustering across regio-
nal and national borders and, finally, encourages international pub-
lic health networks [5].

4.1. Limitations

There are limitations to surveillance capabilities of systems
such as that described in this paper. Genotyped samples represent
a small proportion of infectious cases in the population [27], and
the date and the location associated with the specimen only
approximate epidemiologically relevant parameters. Our defini-
tions have been tested in the domain of food-borne bacterial infec-
tions and by using clusters identified by only one of many possible
molecular genotyping methods. Nevertheless, these definitions are
domain-independent and could be extended to other domains of
prospective biosurveillance. Our observations are in line with pre-
vious experiences in molecular microbiology and the central
hypothesis of public health, that a single outbreak is usually re-
lated to a single infecting strain [5]. Furthermore, turn-around time
of amplification-based molecular fingerprinting techniques per-
forming ‘real-time’ genotyping may now be feasible for reference
laboratories. However when indistinguishable isolates are identi-
fied, appropriate public health actions must be taken. This implies
that patients must be identifiable to public health officers to enable
hypothesis-generating interviews; therefore, especially stringent
criteria of the patient’s privacy protection should be applied to
such early warning systems.

4.2. Conclusions

We have used emerging genotyping techniques to introduce a
working outbreak definition based on temporal and spatial cluster-
ing of genotypes. This definition provides unambiguous clustering
of isolates that can be tuned to accommodate the requirements
and resources available for outbreak investigations thus addressing
a significant problem in current public health surveillance infor-
mation needs. It allows timely recognition, source identification
and capacity to apply public health action and will enable better
early warning systems for new and established biothreats.
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