76 research outputs found

    Tracking the expression of photosensitive genic male sterility genes in rice

    Get PDF
    Photoperiod sensitive genic male sterile rice lines contain genes that induce complete sterility in high temperature and long day light length period, and revert to fertility in optimum low temperature and short day light length period. These lines are good candidates for hybrid rice seed production. The main challenge limiting their use in production of hybrid rice seeds is that of determining the exact time of their growth period when sterility gene(s) is expressed. The objective of this study was to determine the time in the rice growth period when the sterility gene(s) are expressed. Rice line ZAU11S106, a photoperiod sensitive genic male sterile line was used to test the hypothesis: it is possible to estimate time within ±2 days when photosensitive genic male sterility (PGMS) gene is expressed. Sowing was done in 9 rows in Hangzhou, China in the month of May and matured in August when day light length was over 14 h and day temperatures were over 30°C. At 57 days, old plants in row 1 were given short day length treatment and after every four days, the next row was included in the treatment. This was done until plants in row 1 flowered when the treatment was stopped. Plants given short day length treatment at 73 and 77 days old realized 6 and 0% seed set, respectively. At 73 and 77 days old, plants were at dyad and tetrad stages of pollen development, respectively. The conclusion was that, the sterility gene was expressed between the dyad and tetrad stage of pollen development.Key words: Photoperiod, pollen abortion, PGMS rice

    Self-assembly of hydrofluorinated Janus graphene monolayer:a versatile route for designing novel Janus nanoscrolls

    Get PDF
    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main driving force of the self-assembly. Finally, we studied the hydrogen sorption over the formed J-NS with a considerable interlayer spacing, which reaches the US DOE target, indicating that J-NS is a promising candidate for hydrogen storage by controlling the temperature of system. Our theoretical results firstly provide a versatile route for designing novel J-NS from 2D Janus nanomaterials, which has a great potential application in the realm of hydrogen storage/separation

    OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers

    Get PDF
    Hybrids lose heterotic yield advantage when multiplied sexually via meiosis. A potential alternative breeding system for hybrids is apospory, where female gametes develop without meiosis. Common among grasses, apospory begins in the nucellus, where aposporous initials (AIs) appear near the sexual megaspore mother cell (MeMC). The cellular origin of AIs is obscure, but one possibility, suggested by the mac1 and msp1 mutants of maize and rice, is that AIs are apomeiotic derivatives of the additional MeMCs that appear when genetic control over sporocyte numbers is relaxed. MULTIPLE SPOROCYTES1 (MSP1) encodes a leucine-rich-repeat receptor kinase, which is orthologous to EXS/EMS1 in Arabidopsis. Like mac1 and msp1, exs/ems1 mutants produce extra sporocytes in the anther instead of a tapetum, causing male sterility. This phenotype is copied in mutants of TAPETUM DETERMINANT1 (TPD1), which encodes a small protein hypothesized to be an extracellular ligand of EXS/EMS1. Here we show that rice contains two TPD1-like genes, OsTDL1A and OsTDL1B. Both are co-expressed with MSP1 in anthers during meiosis, but only OsTDL1A and MSP1 are co-expressed in the ovule. OsTDL1A binds to the leucine-rich-repeat domain of MSP1 in yeast two-hybrid assays and bimolecular fluorescence complementation in onion cells; OsTDL1B lacks this capacity. When driven by the maize Ubiquitin1 promoter, RNA interference against OsTDL1A phenocopies msp1 in the ovule but not in the anther. Thus, RNAi produces multiple MeMCs without causing male sterility. We conclude that OsTDL1A binds MSP1 in order to limit sporocyte numbers. OsTDL1A-RNAi lines may be suitable starting points for achieving synthetic apospory in rice

    A Genome-wide Microsatellite Polymorphism Database for the Indica and Japonica Rice

    Get PDF
    Microsatellite (MS) polymorphism is an important source of genetic diversity, providing support for map-based cloning and molecular breeding. We have developed a new database that contains 52 845 polymorphic MS loci between indica and japonica, composed of ample Class II MS markers, and integrated 18 828 MS loci from IRGSP and genetic markers from RGP. Based on genetic marker positions on the rice genome (http://rise.genomics.org.cn/rice2/index.jsp ), we determined the approximate genetic distances of these MS loci and validated 100 randomly selected markers experimentally with 90% success rate. In addition, we recorded polymorphic MS positions in indica cv. 9311 that is the most important paternal parent of the two-line hybrid rice in China. Our database will undoubtedly facilitate the application of MS markers in genetic researches and marker-assisted breeding. The data set is freely available from www.wigs.zju.edu.cn/achievment/polySSR

    Sciences for The 2.5-meter Wide Field Survey Telescope (WFST)

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated photometric survey facility under construction jointly by the University of Science and Technology of China and Purple Mountain Observatory. It is equipped with a primary mirror of 2.5m in diameter, an active optical system, and a mosaic CCD camera of 0.73 Gpix on the main focus plane to achieve high-quality imaging over a field of view of 6.5 square degrees. The installation of WFST in the Lenghu observing site is planned to happen in the summer of 2023, and the operation is scheduled to commence within three months afterward. WFST will scan the northern sky in four optical bands (u, g, r, and i) at cadences from hourly/daily to semi-weekly in the deep high-cadence survey (DHS) and the wide field survey (WFS) programs, respectively. WFS reaches a depth of 22.27, 23.32, 22.84, and 22.31 in AB magnitudes in a nominal 30-second exposure in the four bands during a photometric night, respectively, enabling us to search tremendous amount of transients in the low-z universe and systematically investigate the variability of Galactic and extragalactic objects. Intranight 90s exposures as deep as 23 and 24 mag in u and g bands via DHS provide a unique opportunity to facilitate explorations of energetic transients in demand for high sensitivity, including the electromagnetic counterparts of gravitational-wave events detected by the second/third-generation GW detectors, supernovae within a few hours of their explosions, tidal disruption events and luminous fast optical transients even beyond a redshift of 1. Meanwhile, the final 6-year co-added images, anticipated to reach g about 25.5 mag in WFS or even deeper by 1.5 mag in DHS, will be of significant value to general Galactic and extragalactic sciences. The highly uniform legacy surveys of WFST will also serve as an indispensable complement to those of LSST which monitors the southern sky.Comment: 46 pages, submitted to SCMP

    Codon Usage Biases of Transposable Elements and Host Nuclear Genes in Arabidopsis thaliana and Oryza sativa

    Get PDF
    Transposable elements (TEs) are mobile genetic entities ubiquitously distributed in nearly all genomes. High frequency of codons ending in A/T in TEs has been previously observed in some species. In this study, the biases in nucleotide composition and codon usage of TE transposases and host nuclear genes were investigated in the AT-rich genome of Arabidopsis thaliana and the GC-rich genome of Oryza sativa. Codons ending in A/T are more frequently used by TEs compared with their host nuclear genes. A remarkable positive correlation between highly expressed nuclear genes and C/G-ending codons were detected in O. sativa (r=0.944 and 0.839, respectively, P<0.0001) but not in A. thaliana, indicating a close association between the GC content and gene expression level in monocot species. In both species, TE codon usage biases are similar to that of weakly expressed genes. The expression and activity of TEs may be strictly controlled in plant genomes. Mutation bias and selection pressure have simultaneously acted on the TE evolution in A. thaliana and O. sativa. The consistently observed biases of nucleotide composition and codon usage of TEs may also provide a useful clue to accurately detect TE sequences in different species

    Charge-controlled switchable H2 storage on conductive borophene nanosheet

    No full text
    Conductive borophene nanostructures are proposed as an excellent candidate material for charge-controlled switchable H2 storage. Based on density functional theory calculations, we investigate the H2 adsorption on the charged borophene nanosheet. It is found that the adsorption energies of H2 on either positively or negatively charged borophene nanosheets are dramatically enhanced in compared with the neutral material. Charge modulation strategies therefore offer the potential for spontaneous, controllable H2 storage and release. Moreover, the positive or negative charging of borophene nanosheets can in principle achieve H2 storage capacities of 6.5 wt%. These results could provide new insights in searching for materials with exceptionally high H2 storage capacity.This work was supported by the Natural Science Foundation of Shandong Province (ZR2018BEM033), the National Natural Science Foundation of China (Nos. 41330313 and 51502255), Taishan Scholar Foundation (ts20130929), the Fundamental Research Funds for the Central Universities (18CX02022A). This work was partly supported with the assistance of resources provided by the National Computational Infrastructure facility at the Australian National University; allocated via both the National Computational Merit Allocation Scheme supported by the Australian Government and the Australian Research Council grant LE120100181 (“Enhanced merit-based access and support at the new NCI petascale supercomputing facility, 2012e2015”)

    Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Get PDF
    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading

    Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors

    No full text
    Electrode design in nanoscale is considered to be ultra-important to construct a superb capacitor. Herein, a sandwich-like composite was made by combining graphene/polypyrrole (GPPY) with nickel-aluminum layered double hydroxide nanowires (NiAl-NWs) via a facile hydrothermal method. This sandwich-like architecture is promising in energy storage applications due to three unique features: (1) the conductive GPPY substrate not only effectively prevents the layered double hydroxides species from aggregating, but also considerably facilitates the electron transmission; (2) the ultrathin NiAl-NWs ensure a maximum exposure of active Ni2+, which can improve the efficiency of rapid redox reactions even at high current densities; (3) the sufficient space between anisotropic NiAl-NWs can accommodate a large volume change of the nanowires to avoid their collapse or distortion during the reduplicative redox reactions. Keeping all these unique features in mind, when the as-prepared composite was applied to supercapacitors, it presented an enhanced capacitive performance in terms of high specific capacitance (845 F g(-1)), excellent rate performance (67% retained at 30 A g(-1)), remarkable cyclic stability (92% maintained after 5000 cycles) and large energy density (40.1 Wh.Kg(-1)). This accomplishment in the present work inspires an innovative strategy of nanoscale electrode design for high-rate performance supercapacitor electrodes containing pseuducapacitive metal oxide. (C) 2016 Elsevier B.V. All rights reserved
    corecore