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Abstract
Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons
(MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical
longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as
fillers to enhance the gas separation performance of polyimide based mixed matrix membranes
(MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas
permeability compared to pristine polyimide. The high gas selectivity could be attributed to the
GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas
permeability resulted from the hollow structured MWCNTs core with smooth internal surface,
which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to
improve gas separation performance of MMMs due to the unique microstructures, ease of
synthesis and low filling loading.

S Online supplementary data available from stacks.iop.org/NANO/28/065702/mmedia

Keywords: MWCNT@GONRs, normalized selectivity, selective barrier, transport channel,
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(Some figures may appear in colour only in the online journal)

1. Introduction

Membrane technology has drawn significant attention on gas
separation due to its inherent advantages such as higher
efficiency, lower cost and simplicity, compared with con-
ventional separation technologies (cryogenic separation and
pressure swing adsorption). However, the commercialization
of membranes for gas separation is limited [1–4]. The major
reason is the existence of trade-off trend between gas

permeability and selectivity, as shown in the upper bound
relationship by Robeson [5, 6]. In order to surpass the upper
bound correlation, mixed matrix membranes (MMMs),
comprising of dispersed filler (e.g., zeolite [7–9], metal
organic frameworks [10–12], carbon nanotubes (CNTs) [13–
16] and graphene oxide (GO) [17–20]) were fabricated as
promising candidates [21–23].

Among these fillers, CNTs have become a focal point for
gas separation because of their unique properties, such as
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nano-sized hollow structure, smooth internal surface, excel-
lent mechanical and thermal properties [24, 25]. For one
thing, the nano-sized hollow structure and smooth internal
surface of CNTs promote the rapid transportation of gas
molecules through them [26–30]. For example, Skoulidas
et al reported the gas permeation rates in CNTs are 3–4 orders
of magnitude higher than that in ZSM-12 and silicalite due to
the inherent smoothness of CNTs [31]. For another thing, the
excellent mechanical and thermal properties of CNTs can also
significantly enhance the mechanical strength and thermo-
stability of polymer matrix [15, 32]. All these features are
beneficial for the enhancement of gas separation performance
of MMMs. Unfortunately, the aggregation of pristine CNTs
and the bad compatibility between CNTs and polymer are
major hurdle to efficiently fabricate MMMs and enhance
permeability and selectivity simultaneously [33–35].

GO is a novel two-dimensional material with a large
amount of oxygen-containing groups including epoxide,
hydroxyl and carboxylic acid group on their basal planes and
edges [36–40]. The huge specific surface area and oxidized
functional groups of GO can selectively absorb abundant gas
molecules to improve the solubility coefficients of MMMs.
For instance, Shan et al reported that the effects of groups on
the CO2 adsorption ability of graphene were as follows: –
OH> –COOH> –NH2> –CH3, which was ascribed to the
different polarities and sizes of the functional groups. And –

OH, –COOH and –NH2 were more polar than CH3, so they
had a stronger interaction with CO2 molecules [38]. Mean-
while, when GO oriented horizontally in polymer matrix, they
could be acted as a better barrier to improve gas selectivity
[41–43]. Kim et al revealed that different gas had different
effective diffusion pathway between the GO interlayers and
the gas permeance order was
CO2>H2>He>CH4>O2>N2 at 298 K [42]. Fur-
thermore, GO can be dispersed easily in polar solvent such as
N, N-dimethylformamide (DMF), N, N-dimethylacetamide
(DMAc) and N-Methyl-2-pyrrolidone (NMP) to fabricate
homogeneous MMMs. However, GO prone to wrinkle when
they are dispersed individually in polymer matrix, so gas
permeability of MMMs will decrease obviously at certain
concentrations of GO due to the barrier of GO [44–46].

As mentioned before, CNTs could effectively enhance
gas permeability and GO could enhance gas selectivity,
respectively. Hence, incorporating CNTs and GO in MMMs
may be a fantastic design to synchronously enhance gas
permeability and selectivity. Wu et al reported that mixing
10 wt% of CNTs and GO into MMMs enhanced the gas
separation performance for CO2/N2 and CO2/CH4 compared
with that of MMMs adding individual CNTs or GO [46].
However, the high loadings of CNTs and GO mixture were
simply mixed by sonicating. The aggregation of pristine
CNTs, the bad compatibility between CNTs and polymer
matrix and massive wrinkles of GO could not be averted
in MMMs.

In this paper, the novel core/shell structured multi-walled
CNT/GO nanoribbons (MWCNT@GONRs) were fabricated
by simple method. Compared with aforementioned fillers,
MWCNT@GONRs nanohybrids effectively solved the hurdle

of CNTs and GO since the dispersible GONRs shell was in
favor of dispersibility of MWCNT@GONRs and the firm
MWCNTs core could avoid the wrinkle of GO. And a low
loading of MWCNT@GONRs nanohybrids were used as
fillers to effectively enhance gas separation performance of
MMMs. In addition, the microstructure, thermostability and
crystalline characteristic of the nanofillers and MMMs were
studied in detail.

2. Experimental section

2.1. Materials

Polyimide (PI) resin powder (Mw=44 000 g mol−1) was
supplied by Alfa Aesar. MWCNTs (purity�95 wt%, dia-
meter: 8–20 nm, length 5–15 μm,) and Dimethylacetamide
(DMAc) used as solvent were purchased from Aladdin
Chemistry Co., Ltd The remaining chemicals were purchased
from Sinopharm Chemical Reagent Co., Ltd All reagents
were of analytical grade and used without further purification.

2.2. Preparation of MWCNT@GONRs

MWCNT@GONRs were prepared by a modified chemical
longitudinal unzipping method of MWCNTs, as previously
reported [47, 48]. Typically, MWCNTs (500 mg) were dis-
persed in a mixture of concentrated H2SO4 and concentrated
HNO3 in ratio of 3:1. And the reaction mixture was heated at
333 K for 2 h. Then the product was filtered over a 0.45 μm
pore size polytetrafluoroethylene membrane and dried in a
vacuum at 318 K to get oxidized MWCNTs powder.

The oxidized MWCNTs (150 mg) were dispersed in
concentrated H2SO4 (36 ml) under ultrasonication for a few
minutes to form a stable suspension. Then H3PO4 (85%, 4 ml)
was added to the suspension with stirring. And KMnO4

(500 mg) was added slowly with strong stirring. After 1.5 h,
the mixture was heated at 333 K for 2 h and then cooled to
room temperature. Then the mixture was poured on 100 ml of
ice containing H2O2 (30%, 5 ml). The product was filtered
and washed twice with HCl (20%) to remove metal ions
before dispersing in HCl aqueous solution (100 ml, 12%).
Afterwards, the mixture was precipitated overnight and the
sediment was washed with deionized water several times.
Finally, the remaining solid was freeze-dried in a lyophilizer
and then MWCNT@GONRs with a certain oxidation degree
were obtained.

2.3. Membrane preparation

Dense PI membranes were fabricated by solution-casting
method. Prior to membrane fabrication, the PI resin powder
and nanofillers (MWCNT@GONRs) were dried at 333 K in a
vacuum oven for 24 h to remove the residual moisture.
Firstly, the nanofillers were dispersed in DMAc to form stable
suspension under mild ultrasonication. The nanofiller con-
centrations of MMMs were in the range of 0–2 wt%. Then PI
resin powder (0.74 g) was added into the suspension, which
was stirred vigorously until the mixture formed a

2

Nanotechnology 28 (2017) 065702 Q Xue et al



homogeneous suspension. The mixture was left at room
temperature for 12 h to remove air bubbles. The resulting
solution was cast onto a flat glass at 298 K in DMAc
atmosphere for 24 h. Finally, the formed film was left in a
vacuum oven at 393 K for 24 h to remove the residual solvent.
The pristine PI membrane was also prepared by exactly the
same procedure without addition of nanofillers for compar-
ison. The average thickness of resulting membranes was
about 20 μm, as measured by a digital micrometer screw
gauge.

2.4. Characterization

The surface morphology of MWCNT@GONRs was analyzed
by a transmission electron microscope (TEM, JEOL, Japan) at
an accelerating voltage of 200 kV. The N2 adsorption-deso-
rption isotherm of MWCNT@GONRs were measured at 77 K
using a surface area and porosity analyzer in order to deter-
mine the Brunauer–Emmett–Teller surface areas. Prior to the
measurement, MWCNT@GONRs were pretreated under N2

flow at 573 K. The thermostability of MWCNT@GONRs and
membranes were measured using Mettler Toledo thermal
gravity analyseis (TGA) instrument from room temperature to
1173 K under nitrogen flow at a heating rate of 10 Kmin−1.
The crystalline properties of membranes were evaluated using
x-ray diffraction (XRD) with Cu Kα monochromatized
radiation (λ=1.54 Å) and operated at 45 kV and 40 mA. The
cross-section of membranes was characterized using a field
emission scanning electron microscope. All membranes were
fractured using liquid nitrogen before scanning.

2.5. Gas permeation measurements

The gas permeabilities of samples were measured by per-
meation measurement equipment described in the previous
literature [49]. The experiments were carried out using the
constant volume method and the permeabilities were calcu-
lated by the equation (1):

= ´
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where V is the downstream volume (cm3) at standard temp-
erature and pressure, l is the thickness of membranes (cm), A
is the effective area of membranes and Δp is the pressure
difference between the feed side and permeate side (cmHg).

The selectivity (αij) is calculated by the following
equation:
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3. Results and discussion

3.1. Characterization of MWCNT@GONRs nanohybrids

The TEM images of MWCNTs and MWCNT@GONRs
nanohybrids were shown in figure 1. As shown in figures 1(a)

and (b), the pristine MWCNT showed smooth surfaces and
the diameters were distributed from 8–20 nm. And MWCNTs
were wrapped by GONRs to form the core/shell structure of
MWCNT@GONRs nanohybrids in figures 1(c) and (d). The
results showed that the length of MWCNT@GONRs nano-
hybrids was shorter than that of MWCNTs and the aggrega-
tion of MWCNTs was solved. Almost all of MWCNTs was
oxidized to form MWCNT@GONRs. However, the mass
ratios of GONRs in MWCNT@GONRs were different
because MWCNTs with thick diameter were oxidized easily.

The FTIR spectrum of pristine MWCNTs and core/shell
structured MWCNT@GONRs nanohybrids were showed in
figure 2. The peaks in spectrum at 3425, 1631 and 1226 cm−1

were attributed to the stretching vibration of the C–OH
groups, C=O groups and C–O groups, respectively.
Accordingly, pristine MWCNTs and MWCNT@GONRs
exhibited the same oxygen-containing groups including car-
boxyl and hydroxyl groups. The oxidation functional groups
of pristine MWCNTs may be generated by pretreatment of
purification before selling.

Raman spectroscopy was performed in the range of 1000
−2000 cm−1 to check the degree of oxidation using an
excitation wavelength of 514.5 nm, as shown in figure 3. The
Raman spectrum of pristine MWCNTs was shown in figure
S1. The two peaks in spectrum were observed at 1355 and
1592 cm−1, indicating the stretching modes of the D band and
G band, respectively. The D-band arises from the multiple
phonon scattering of defects. The G band arises from the
stretching of corresponds to sp2 hybridization and conjugated
double bonds during the formation of the aryl-nanotube
bonds. The intensity ratio of the D and G peaks and the
variation of their intensity are commonly used to quantify the
structural quality of carbon materials [35]. After fitting by
mixing a Lorentz shape, it can be found that the intensity ratio
of ID/IG in MWCNT@GONRs nanohybrids is 0.95, which is
similar to GO as reported [50, 51]. Thus, MWCNT@GONRs
nanohybrids also possessed a high degree of oxidation.

3.2. Membrane characterization

The cross-section of pristine PI membrane and MMMs with 1
and 2 wt% filler loadings were shown in figure 4. As shown in
figures 4(b) and (e), the MWCNT@GONRs were homo-
geneously dispersed in MMMs due to superior dispersity of
GONRs, which was in favor of forming uniform MMMs.
Unfortunately, the MWCNT@GONRs agglomerates were
found due to their large surface energy and high loadings, as
shown in figures 4(c) and (f), which caused the lower selec-
tivity and higher permeability of MMM with 2 wt% filler
loading. (The cross-section SEM images of all resultant
membranes were shown in figure S2.)

Figure 5 showed the TGA curves of MMMs with dif-
ferent loadings, which indicated the effect of nanofillers on
the thermal stability of MMMs. (The TGA curve of
MWCNT@GONRs was showed in figure S3.) The TGA
curves of the MMMs had two similar weight loss stages. The
first weight loss stage in the temperature range of 440–550 K
was attributed to the release of physically adsorbed water
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contained in the samples and decomposition of a part of
oxygen-containing groups of nanofillers [52, 53]. And the
second stage was mainly caused by the decomposition of
polymer main chains [44]. Compared to pristine PI mem-
brane, MMMs showed the higher decomposition temperature
and lower water adsorption due to the competitive adsorption
of water molecular and nanofillers on polymer chains, which
indicated that the interactions of hydrogen bonds between
nanofillers and polymer chains was stronger than that between
water molecular and polymer chains.

In order to investigate the influence of nanofillers on
arrangement of polymer chain, the crystalline structure of
MMMs was studied by XRD. The XRD patterns of MMMs
were shown in figure 6. The pristine PI membrane is a
semicrystalline polymer with diffraction peaks at 16° and
22.6° of 2θ. For PI/MWCNT@GONRs MMMs, the intensity
of diffraction peaks decreased and then increased with adding
of nanofillers and the intensity of peaks reached to minimum
at 1 wt% loading of MWCNT@GONRs, which meant that
the crystallinity was destroyed and the degree of crystallinity
become lower due to the strong interaction between oxygen
containing functional groups of nanofillers and N atom of PI

Figure 1. TEM images of pristine MWCNTs (a) and (b) and MWCNT@GONRs nanohybrids (c) and (d).

Figure 2. The FTIR spectrum of pristine MWCNTs and core/shell
structured MWCNT@GONRs nanohybrids.

Figure 3. Raman spectrum of MWCNT@GONRs nanohybrids.
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chains [15]. Meanwhile, the results implied the better com-
patibility between nanofillers and PI and dispersibility of
MWCNT@GONRs in polymer matrix at 1 wt% loading.

3.3. Separation performance of membranes

The performances of both the MMMs and the reference
pristine PI membrane were tested for the separation of H2,
CO2, N2 and CH4 at 35 °C. All values in figures 7(a) and (b)
were found to be accurate within 5% error margin, confirming
the consistency of both the optimized synthesis procedure and
testing method used to evaluate gas separation. The selectivity
value of the unfilled reference membrane was lower than
already reported results [54], which might be attributed to the
smaller molecular weight and different membrane synthesis
procedure. But the gas permeability value of the unfilled
reference membrane was higher than already reported results
[44, 54]. The permeability of H2 was measured to compara-
tively study the gas permeation mechanism of membranes due
to smaller dynamic diameter of H2 and weaker interaction
between polymer matrix and H2. In figure 7, the permeability
of H2 was higher than those permeabilities of other gases due
to H2 molecular show smaller dynamic diameter (0.29 nm)
and the dynamic diameters of CO2, N2 and CH4 were 0.34,
0.36 and 0.38 nm, respectively. The MMMs showed higher
permeability of CO2 due to the strong interaction between
CO2 and negatively polarized N atoms in polymer chains
[38], which was in favor of CO2 permeability.

With increasing filler loading, the H2 and CO2 perme-
abilities and selectivities increased gradually because of more
free volume cavities and stronger interaction between CO2

and polymer chains [44]. At 0.5 wt% filler loading, the

Figure 4. SEM images of the pristine PI membrane (a) and (d) and MMMs at 1 wt% filler loading (b) and (e) and 2 wt% filler loading (c)
and (f).

Figure 5. The TGA curves of pure PI membrane and MMMs with
different loadings.

Figure 6. XRD patterns of pure PI membrane and MMMs with
different loadings.
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permeabilities of H2 and CO2 increased to 148% and 128%
and the selectivities of H2/N2, H2/CH4, CO2/N2 and CO2/
CH4 increased to 174%, 144%, 150% and 125%, respec-
tively. The curve showed a special point at 1 wt% filler
loading and gas permeability of H2 decreased suddenly,
which might be caused by the better stretch of GONRs as a
barrier layer [45]. But the permeability of CO2 slightly
decreased due to the synergistic effect of smaller longitudinal
radius and strong quadrupole moment. The permeabilities of
N2 and CH4 decreased due to their large dynamic diameter.
Thus the selectivities of H2/N2, H2/CH4, CO2/N2 and CO2/
CH4 increased to 198%, 159%, 243% and 195%, respec-
tively. The MWCNT@GONRs in MMMs began to aggregate
when the filler loadings reached 2 wt% so that the perme-
ability increases and selectivity decreased in figures 8(a)
and (b).

The schematic diagram of gas transport modes in pristine
PI membrane and MMMs were shown in figure 8 and the gas
transfer path was marked. The separation mechanism of

pristine PI membrane was solution-diffusion and the separa-
tion mechanism of MMMs was facilitated-transport. The
effective carrier of this facilitated-transport mechanism was
the carboxylate group (–COO−), which could be contributed
by the GONRs shell. CO2 reacted with –COO

− and free water
molecular to produce -HCO3 as shown in equation (3), and
then diffused through the membranes in the form of -HCO3

ions [55].

+ - +  - +- - ( )CO COO H O COOH HCO . 32 2 3

In MMMs, the higher gas selectivity could be attributed
to the GONRs shell, which provided a selective barrier and
large gas adsorbed area, while the higher gas permeability
resulted from the hollow structured MWCNT core with
smooth internal surface, which acted as rapid transport
channels. At 1 wt% filler loading, the gas permeability of
MMMs had a somewhat decrease, but the decrease value was
smaller than the reported value of MMMs with GO
[17, 45, 46]. The results indicated that the rapid transport

Figure 7. Gas permeabilities (a) and gas selectivities (b) of MMMs with different filler loadings (1 bar and 35 °C).

Figure 8. The schematic diagram of gas transport modes in pristine PI membrane and MMMs.
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channels of MWCNTs retarded the barrier effect of GONRs
to some extent. Therefore, the adding of nanofiller may affect
gas permeation by the following means [15, 38, 34, 46]: (a)
the functional group at the surface of nanofiller may interact
with some gases (CO2 and CH4), which enhances the solu-
bility of MMMs; (b) the interaction between polymer chains
and nanofiller may enhance gas diffusion in MMMs by
increasing the free volumes and disturbing the polymer chains
packing; (c) the increased tortuosity for diffusion and the
barrier of nanofiller may cause the gas diffusion decrease in
MMMs; (d) the agglomeration of nanofiller may enhance the
gas diffusion and deteriorate the gas separation performance.

3.4. Effect of operating temperature on membrane
performance

In order to study effect of operating temperature on mem-
brane performance, the temperature dependence of CO2 per-
meation performance was carried out by varying the operating
temperature as shown in figure 10(a). The CO2 permeability
of MMMs with 1 wt% filler loading showed an increase up to
79% as the temperature increased from 25 °C to 55 °C. The
kinetic energy of gas molecules increased and the relaxation
of the polymeric chains increased with increasing feed
temperature, which lowered the activation energy required for
gas permeation and enhanced the gas permeability. In order to
further study the role of temperature in altering the membrane
performance, the activation energy of gas permeation (Ep)
was calculated by Arrhenius equation (4) as follow:

= -⎜ ⎟⎛
⎝

⎞
⎠ ( )P P

E

RT
exp , 4P

0

where P is the gas permeability, P0 is the pre-exponential
factor, R is the gas constant (8.314 J mol−1 K−1) and T is the
absolute temperature (K).

The results showed that Ep of MMM with 1 wt% filler
loading is 17.4 kJ mol−1, which was lower than that of the
previously studied membranes [55]. This was attributed to the
increased porosity of membrane imparted by the fillers and

this result supported the argument that the
MWCNT@GONRs provided shorter and faster path.

The effect of temperature on CO2 selectivity of mem-
branes was studied, as shown in figure 9(b). The gas selec-
tivity of pure membrane firstly increased and then decreased
gradually with increasing operation temperature. And the gas
selectivities of MMM with 1 wt% filler loading reached
maximum at 308 K, but gas selectivity of MMMs with 1 wt%
filler loading remained a high level with increasing
temperature.

The plots of gas separation performance of membranes
were shown in figures 10(a) and (b). (The different color
represented gas separation performance of MMMs with dif-
ferent loadings. The four stars were gas separation perfor-
mance of MMMs with 1 wt% loadings at different
temperature.) The gas separation performance of MMMs with
1 wt% filler loading was far superior to that of pure mem-
brane. With increasing operation temperature, the gas
separation performance of MMMs with 1 wt% filler loading
firstly increased then decreased and reached the maximum
value at 308 K.

The normalized gas selectivities for PI-based MMMs
from literature were shown in figures 11(a) and (b) [54–59],
normalized for the initial value of unfilled membrane. The
normalized CO2 permeability of MMMs with 1 wt% filler
loading was 1.15, which was similar with the reported value
[54, 56]. Compared with gas separation data from literatures,
the normalized CO2/N2 selectivity and normalized CO2/CH4

selectivity in this work were both far superior to that reported.
The long time operation test was shown in figure S6.

4. Conclusions

Highly porous and fast-transported MWCNT@GONRs
nanohybrid was firstly used as inorganic nanofillers in
MMMs with different loadings. SEM and XRD spectrum
exhibited a good polymer-filler contact and a homogenous
dispersion of filler throughout the polymer matrix due to the

Figure 9. Effect of temperature on CO2 permeability (a) and selectivity (b) of membranes.
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dispersibility of GONRs shell. The measuring results showed
that a low loading of core/shell MWCNT@GONRs could
effectively enhance the gas separation performance of MMMs
by exerting the synergistic effect of MWCNTs and GONRs.
The high gas selectivity could be attributed to the GONRs
shell, which provided a selective barrier and large gas
adsorbed area, while the high gas permeability resulted from
the hollow structured MWCNTs core with smooth internal
surface, which acted as a rapid transport channels. The unique
microstructures, ease of synthesis and low filling loading
made MWCNT@GONRs promising candidates to improve
the gas separation performance of industrial gas separation
membrane.
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