141 research outputs found

    Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses

    Get PDF
    Polyamines (PAs) are low molecular weight aliphatic nitrogenous bases containing two or more amino groups. They are produced by organisms during metabolism and are present in almost all cells. Because they play important roles in diverse plant growth and developmental processes and in environmental stress responses, they are considered as a new kind of plant biostimulant. With the development of molecular biotechnology techniques, there is increasing evidence that PAs, whether applied exogenously or produced endogenously via genetic engineering, can positively affect plant growth, productivity, and stress tolerance. However, it is still not fully understood how PAs regulate plant growth and stress responses. In this review, we attempt to cover these information gaps and provide a comprehensive and critical assessment of the published literature on the relationships between PAs and plant flowering, embryo development, senescence, and responses to several (mainly abiotic) stresses. The aim of this review is to summarize how PAs improve plants' productivity, and to provide a basis for future research on the mechanism of action of PAs in plant growth and development. Future perspectives for PA research are also suggested

    Generation of diffuse large B cell lymphoma-associated antigen-specific Vα6/Vβ13+T cells by TCR gene transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous study had amplified antigen-specific full-length TCR α and β genes of clonally expanded T cells in the peripheral blood (PB) of patients with diffuse large B-cell lymphoma (DLBCL). The transfer of T cell receptor (TCR) genes endows T cells with new antigen specificity. Therefore, the aim of this study is to generate diffuse large B cell lymphoma (DLBCL)-specific T cells by T cell receptor (TCR) gene transfer.</p> <p>Materials and methods</p> <p>Two different eukaryotic expression plasmids harboring TCR Vα6 and TCR Vβ13 genes specific for DLBCL-associated antigens were constructed and subsequently transferred into human T cells using Nucleofector™ technique. The expression of targeted genes in TCR gene-modified cells was detected by real-time PCR, and western blot using TCR Vβ antibody. The specific cytotoxicity of TCR gene-transferred T cells <it>in vitro </it>was estimated using a lactate dehydrogenase (LDH) release assay.</p> <p>Results</p> <p>Two different eukaryotic expression plasmids harboring TCR Vα6 and TCR Vβ13 genes specific for DLBCL-associated antigens were constructed and subsequently transferred into T cells from healthy donors. Specific anti-DLBCL cytotoxic T lymphocytes (CTL) could be induced by transduction of specific TCR gene to modify healthy T cells. The transgene cassette of TCR Vβ13-IRES-TCR Vα6 was superior to the other in the function of TCR-redirected T cells.</p> <p>Conclusions</p> <p>Specific anti-DLBCL cytotoxic T lymphocyte (CTL) could be inducted by transduction of specific TCR gene to modify healthy T cells.</p

    Regulatory effects of IRF4 on immune cells in the tumor microenvironment

    Get PDF
    The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention

    FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting

    Full text link
    Recent studies have shown that deep learning models such as RNNs and Transformers have brought significant performance gains for long-term forecasting of time series because they effectively utilize historical information. We found, however, that there is still great room for improvement in how to preserve historical information in neural networks while avoiding overfitting to noise presented in the history. Addressing this allows better utilization of the capabilities of deep learning models. To this end, we design a \textbf{F}requency \textbf{i}mproved \textbf{L}egendre \textbf{M}emory model, or {\bf FiLM}: it applies Legendre Polynomials projections to approximate historical information, uses Fourier projection to remove noise, and adds a low-rank approximation to speed up computation. Our empirical studies show that the proposed FiLM significantly improves the accuracy of state-of-the-art models in multivariate and univariate long-term forecasting by (\textbf{20.3\%}, \textbf{22.6\%}), respectively. We also demonstrate that the representation module developed in this work can be used as a general plug-in to improve the long-term prediction performance of other deep learning modules. Code is available at https://github.com/tianzhou2011/FiLM/Comment: Accepted by The Thirty-Sixth Annual Conference on Neural Information Processing Systems (NeurIPS 2022

    In situ Proteomic Profiling of Curcumin Targets in HCT116 Colon Cancer Cell Line

    Get PDF
    To date, the exact targets and mechanism of action of curcumin, a natural product with anti-inflammatory and anti-cancer properties, remain elusive. Here we synthesized a cell permeable curcumin probe (Cur-P) with an alkyne moiety, which can be tagged with biotin for affinity enrichment, or with a fluorescent dye for visualization of the direct-binding protein targets of curcumin in situ. iTRAQ™ quantitative proteomics approach was applied to distinguish the specific binding targets from the non-specific ones. In total, 197 proteins were confidently identified as curcumin binding targets from HCT116 colon cancer cell line. Gene Ontology analysis showed that the targets are broadly distributed and enriched in the nucleus, mitochondria and plasma membrane, and they are involved in various biological functions including metabolic process, regulation, response to stimulus and cellular process. Ingenuity Pathway Analysis™ (IPA) suggested that curcumin may exert its anticancer effects over multiple critical biological pathways including the EIF2, eIF4/p70S6K, mTOR signaling and mitochondrial dysfunction pathways. Functional validations confirmed that curcumin downregulates cellular protein synthesis, and induces autophagy, lysosomal activation and increased ROS production, thus leading to cell death

    Controlled Synthesis of Hollow α-Fe2O3 Microspheres Assembled With Ionic Liquid for Enhanced Visible-Light Photocatalytic Activity

    Get PDF
    Porous self-assembled α-Fe2O3 hollow microspheres were fabricated via an ionic liquid-assisted solvothermal reaction and sequential calcinations. The concentration of the ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate [C4Mim]BF4) was found to play a crucial role in the control of these α-Fe2O3 hollow structures. Trace amounts ionic liquid was used as the soft template to synthesize α-Fe2O3 hollow spheres with a large specific surface (up to 220 m2/g). Based on time-dependent experiments, the proposed formation mechanisms were presented. Under UV light irradiation, the as-synthesized α-Fe2O3 hollow spheres exhibited excellent photocatalysis in Rhodamine B (RhB) photodegradation and the rate constant was 2–3 times higher than α-Fe2O3 particles. The magnetic properties of α-Fe2O3 hollow structures were found to be closely associated with the shape anisotropy

    Accuracy of detecting residual disease after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma (preSINO trial): A prospective multicenter diagnostic cohort study

    Get PDF
    Background: After neoadjuvant chemoradiotherapy (nCRT) for esophageal cancer, high pathologically complete response (pCR) rates are being achieved especially in patients with squamous cell carcinoma (SCC). An active surveillance strategy has been proposed for SCC patients with clinically complete response (cCR) after nCRT. To justify omitting surgical resection, patients with residual disease should be accurately identified. The aim of this study is to assess the accuracy of response evaluations after nCRT based on the preSANO trial, including positron emission tomography with computed tomography (PET-CT), endoscopy with bite-on-bite biopsies and endoscopic ultrasonography (EUS) with fine-needle aspiration (FNA) in patients with potentially curable esophageal SCC. Methods: Operable esophageal SCC patients who are planned to undergo nCRT according to the CROSS regimen and are planned to undergo surgery will be recruited from four Asian centers. Four to 6 weeks after completion of nCRT, patients will undergo a first clinical response evaluation (CRE-1) consisting of endoscopy with bite-on-bite biopsies. In patients without histological evidence of residual tumor (i.e. without positive biopsies), surgery will be postponed another 6 weeks. A second clinical response evaluation (CRE-2) will be performed 10-12 weeks after completion of nCRT, consisting of PET-CT, endoscopy with bite-on-bite biopsies and EUS with FNA. Immediately after CRE-2 all patients without evidence of distant metastases will undergo esophagectomy. Results of CRE-1 and CRE-2 as well as results of the three single diagnostic modalities will be correlated to pathological response in the resection specimen (gold standard) for calculation of sensitivity, specificity, negative predictive value and positive predictive value. Discussion: If the current study shows that major locoregional residual disease (> 10% residual carcinoma or any residual nodal disease) can be accurately (i.e. with sensitivity of 80.5%) detected in patients with esophageal SCC, a prospective trial will be conducted comparing active surveillance with standard esophagectomy in patients with a clinically complete response after nCRT (SINO trial). Trial registration: The preSINO trial has been registered at ClinicalTrials.gov as NCT03937362 (May 3, 2019)

    Decreased level of recent thymic emigrants in CD4+ and CD8+T cells from CML patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T-cell immunodeficiency is a common feature in cancer patients, which may relate to initiation and development of tumor. Based on our previous finding, to further characterize the immune status, T cell proliferative history was analyzed in CD4+ and CD8+ T cells from chronic myeloid leukemia (CML) patients.</p> <p>Methods</p> <p>Quantitative analysis of δRec-ψJα signal joint T cell receptor excision circles (sjTRECs) was performed in PBMCs, CD3+, CD4+ and CD8+T cells by real-time PCR, and the analysis of 23 <it>TRBV-D1 </it>sjTRECs was performed by semi-nested PCR. Forty eight CML cases in chronic phase (CML-CP) were selected for this study and 17 healthy individuals served as controls.</p> <p>Results</p> <p>The levels of δRec-ψJα sjTRECs in PBMCs, CD3+, CD4+, and CD8+ T cells were significantly decreased in CML patients, compared with control groups. Moreover, the numbers of detectable <it>TRBV </it>subfamily sjTRECs, as well as the frequency of particular <it>TRBV-BD</it>1 sjTRECs in patients with CML were significantly lower than those from healthy individuals.</p> <p>Conclusions</p> <p>We observed decreased levels of recent thymic emigrants in CD4+ and CD8+ T cells that may underlay the persistent immunodeficiency in CML patients.</p
    corecore