173 research outputs found

    Shot Classification in Broadcast Soccer Video

    Get PDF
    In this paper, we present an effective hierarchical shot classification scheme for broadcast soccer video. We first partition a video into replay and non-replay shots with replay logo detection. Then, non-replay shots are further classified into Long, Medium, Close-up or Out-field types with color and texture features based on a decision tree. We tested the method on real broadcast FIFA soccer videos, and the experimental results demonstrate its effectiveness.

    Stimulation of trans-resveratrol biosynthesis in Vitis vinifera cv. Kyoho cell suspension cultures by 2, 3-dihydroxypropyl jasmonate elicitation

    Get PDF
    Background: Plant cell suspension culture of Vitis vinifera is a promising technology for investigating different factors that are able to induce and/or modify stilbenes biosynthesis. Jasmonates have been reported to play an important role in a signal transduction pathway that regulates defence responses as well as the production of secondary metabolites. In this study, 2, 3-dihydroxypropyl jasmonate (DHPJA) was used to investigate its effect on stimulating trans-resveratrol (t-R) accumulation and the plant defence responses in Vitis vinifera cv. Kyoho cell suspension cultures for the first time. Results: It demonstrated that DHPJA had superior effects on stilbenoids accumulation over methyl jasmonate (MeJA). The optimal condition was 150 \u3bcM DHPJA added on day 15 of cultivation period, with the highest level of t-R accumulation which was increased 1.8-fold and 1.3-fold compared with the control and 150 \u3bcM MeJA respectively. DHPJA induced stronger plant defence responses, including oxidative burst and activation of L-phenylalanine ammonia lyase (PAL) than MeJA. H2O2 generation induced by DHPJA played a significant role in enhancing t-R accumulation. Adding a specific inhibitor of H2O2 signalling pathway inhibited DHPJA-induced t-R accumulation, but had no effects on DHPJA-induced other metabolites accumulation, which resulted in regulations of product diversity. Conclusions: This study demonstrated that DHPJA was an efficient elicitor to enhance t-R accumulation by activating stronger oxidative burst, and H2O2 signalling pathway could regulate product diversity in DHPJA-induced V. vinifera cv. Kyoho cell suspension cultures

    Comparison of genetic impact on growth and wood traits between seedlings and clones from the same plus trees of Pinus koraiensis

    Get PDF
    To evaluate the relationships among clones and open pollinated families from the same plus trees and to select elite breeding materials, growth, and wood characteristics of 33-year-old Pinus koraiensis clones and families were measured and analyzed. The results show that growth and wood characters varied significantly. The variation due to clonal effects was higher than that of family effects. The ratio of genetic to phenotypic coefficient of variation of clones in growth and wood traits was above 90%, and the repeatability of these characteristics was more than 0.8, whereas the ratio of genetic to phenotypic coefficient of variation of families was above 90%. The broad-sense heritability of all characteristics exceeded 0.4, and the narrow-sense family heritability of growth traits was less than 0.3. Growth characteristics were positively correlated with each other, but most wood properties were weakly correlated in both clones and families. Fiber length and width were positively correlated between clones and families. Using the membership function method, eleven clones and four families were selected as superior material for improved diameter growth and wood production, and two families from clonal and open-pollinated trees showed consistently better performance. Generally, selection of the best clones is an effective alternative to deployment of families as the repeatability estimates from clonal trees were higher than narrow-sense heritability estimates from open pollinated families. The results provide valuable insight for improving P. koraiensis breeding programs and subsequent genetic improvement

    Highly stretchable conductor inspired by compliant mechanism

    Get PDF
    Flexible and stretchable conductors have invaluable applications in multiple domains, such as sensors, displays, and electronic skins. The stable conductance exhibited by conductors when subjected to diverse forms of deformation, such as tensile stress, curvature, or torsion, represents a fundamental characteristic. Attaining high conductivity and stretchability simultaneously in conductive materials is a formidable challenge, owing to inherent constraints in materials found in nature. To overcome this problem, an innovative approach of structurally designing conductors using existing materials to achieve high deformability and stretchability, i.e. stretchable conductors inspired by a compliant mechanism is proposed in this paper. Thus, a novel stretchable conductor inspired by flexible mechanisms is introduced. Unlike stretchable conductors based on Kirigami structures, the stretchable conductor based on flexible mechanisms can achieve large in‐plane deformation within the material's strength limit. The concept and design process of the highly deformable stretchable conductor inspired by flexible mechanisms are presented in this paper. Experimental results show that the resistance change ratio of the conductor remains within 0.05% during the 0–200% strain process. The consistency and durability of the conductor during stretching deformation are also confirmed through 500 repetitions of the test. Additionally, the experiments with the electric motor and light‐emitting diode (LED) light confirm the conductor's ability to maintain a stable current

    Curcumin alleviates experimental colitis in mice by suppressing necroptosis of intestinal epithelial cells

    Get PDF
    Curcumin, the primary bioactive substance in turmeric, exhibits potential therapeutic effects on ulcerative colitis. However, its mechanism for regulating necroptosis in colitis has not been fully elucidated. In this study, the effect of curcumin on experimental colitis-induced necroptosis of intestinal epithelial cells was investigated, and its molecular mechanism was further explored. We found that curcumin blocked necroptosis in a dose-dependent manner by inhibiting the phosphorylation of RIP3 and MLKL instead of RIP1 in HT-29 cells. Co-Immunoprecipitation assay showed that curcumin weakened the interaction between RIP1 and RIP3, possibly due to the direct binding of curcumin to RIP3 as suggested by drug affinity responsive target stability analysis. In a classical in vivo model of TNF-α and pan-caspase inhibitor-induced necroptosis in C57BL/6 mice, curcumin potently inhibited systemic inflammatory responses initiated by the necroptosis signaling pathway. Then, using a dextran sodium sulfate-induced colitis model in C57BL/6 mice, we found that curcumin inhibited the expression of p-RIP3 in the intestinal epithelium, reduced intestinal epithelial cells loss, improved the function of the intestinal tight junction barrier, and reduced local intestinal inflammation. Collectively, our findings suggest that curcumin is a potent targeted RIP3 inhibitor with anti-necroptotic and anti-inflammatory effects, maintains intestinal barrier function, and effectively alleviates colitis injury

    Unlocking the mystery of the hard-to-sequence phage genome: PaP1 methylome and bacterial immunity

    Get PDF
    BACKGROUND: Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome. RESULTS: After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51 N-6-methyladenines and 152 N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites found in the genome were methylated in these motifs. Further investigations revealed a novel immune mechanism of bacteria, in which host bacteria can recognise and repel modified bases containing inserts in a large scale. This mechanism could be accounted for the failure of the shotgun method in PaP1 genome sequencing. This problem was resolved using the nfi(-) mutant of Escherichia coli DH5α as a host bacterium to construct a shotgun library. CONCLUSIONS: This work provided insights into the hard-to-sequence phage PaP1 genome and discovered a new mechanism of bacterial immunity. The methylome of phage PaP1 is responsible for the failure of shotgun sequencing and for bacterial immunity mediated by enzyme Endo V activity; this methylome also provides a valuable resource for future studies on PaP1 genome replication and modification, as well as on gene regulation and host interaction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-803) contains supplementary material, which is available to authorized users

    Thermosensitive Nanocables Prepared by Surface-Initiated Atom Transfer Radical Polymerization

    Get PDF
    Thermosensitive nanocables consisting of Au nanowire cores and poly(N-isopropylacrylamide) sheaths (denoted as Au/PNIPAAm) were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP). The formation of PNIPAAm sheath was verified by Fourier transform infrared (FTIR) and hydrogen nuclear magnetic resonance (1H NMR) spectroscopy. Transmission electron microscope (TEM) results confirmed the core/shell structure of nanohybrids. The thickness and density of PNIPAAm sheaths can be adjusted by controlling the amount of cross-linker during the polymerization. Signature temperature response was observed from Au/cross-linked-PNIPAAm nanocables. Such smart nanocables show immense potentials as building blocks for novel thermosensitive nanodevices in future
    corecore