3 research outputs found

    Hyperdislocations in van der Waals Layered Materials

    No full text
    Dislocations are one-dimensional line defects in three-dimensional crystals or periodic structures. It is common that the dislocation networks made of interactive dislocations be generated during plastic deformation. In van der Waals layered materials, the highly anisotropic nature facilitates the formation of such dislocation networks, which is critical for the friction or exfoliation behavior for these materials. By transmission electron microscopy analysis, we found the topological defects in such dislocation networks can be perfectly rationalized in the framework of traditional dislocation theory, which we applied the name “hyperdislocations”. Due to the strong pinning effect of hyperdislocations, the state of exfoliation can be easily triggered by 1° twisting between two layers, which also explains the origin of disregistry and frictionlessness for all of the superlubricants that are widely used for friction reduction and wear protection

    Impact of Polar Edge Terminations of the Transition Metal Dichalcogenide Monolayers during Vapor Growth

    Get PDF
    The polar edges of two-dimensional monolayer transition metal dichalcogenides (TMD) and their alloys are examined by combined theoretical (density functional theory) and experimental approaches. For these polar edges, the growth reaction energies between different edge terminations are considered instead of the surface free energies. Due to different energy evolutions during growth on the zigzag edges between MoS<sub>2</sub> and WS<sub>2</sub>, the S-ZZ edges in the WS<sub>2</sub> monolayer flakes more easily decompose into sawtooth-like edges in M-ZZ type as compared to the MoS<sub>2</sub> monolayer; thus, the hexagonal morphology can be seen more often in WS<sub>2</sub>. Moreover, the observed anisotropic short-range order in the MoS<sub>2</sub>/WS<sub>2</sub> alloys is originated from the freezed edge configurations during growth, explainable by the growth kinetics and thermodynamics of the Mo-ZZ-edges. The determination of the growing edge terminations is of great importance for the controllable synthesis of the emergent two-dimensional TMD materials

    Triangular Monometallic Cyanide Cluster Entrapped in Carbon Cage with Geometry-Dependent Molecular Magnetism

    Get PDF
    Clusterfullerenes are capable of entrapping a variety of metal clusters within carbon cage, for which the entrapped metal cluster generally keeps its geometric structure (e.g., bond distance and angle) upon changing the isomeric structure of fullerene cage, and whether the properties of the entrapped metal cluster is geometry-dependent remains unclear. Herein we report an unusual triangular monometallic cluster entrapped in fullerene cage by isolating several novel terbium cyanide clusterfullerenes (TbNC@C<sub>82</sub>) with different cage isomeric structures. Upon varying the isomeric structure of C<sub>82</sub> cage from C<sub>2</sub>(5) to C<sub>s</sub>(6) and to C<sub>2v</sub>(9), the entrapped triangular TbNC cluster exhibits significant distortions as evidenced by the changes of Tb–C­(N) and C–N bond distances and variation of the Tb–C­(N)–N­(C) angle by up to 20°, revealing that the geometric structure of the entrapped triangular TbNC cluster is variable. All three TbNC@C<sub>82</sub> molecules are found to be single-ion magnets, and the change of the geometric structure of TbNC cluster directly leads to the alternation of the magnetic relaxation time of the corresponding TbNC@C<sub>82</sub> clusterfullerene
    corecore