11 research outputs found

    AC Electric-Field Assistant Architecting Ordered Network of Ni@PS Microspheres in Epoxy Resin to Enhance Conductivity

    No full text
    By using the low loading of the conductor filler to achieve high conductivity is a challenge associated with electrically conductive adhesion. In this study, we show an assembling of nickel-coated polystyrene (Ni@PS) microspheres into 3-dimensional network within the epoxy resin with the assistance of an electric field. The morphology evolution of the microspheres was observed with optical microscopy and scanning electron microscopy (SEM). The response speed of Ni@PS microsphere to the electric field were investigated by measuring the viscosity and shear stress variation of the suspension at a low shear rate with an electrorheological instrument. The SEM results revealed that the Ni@PS microspheres aligned into a pearl-alike structure. The AC impedance spectroscopy confirmed that the conductivity of this pearl-alike alignment was significantly enhanced when compared to the pristine one. The maximum enhancement in conductivity is achieved at 15 wt. % of Ni@PS microspheres with the aligned composites about 3 orders of magnitude as much as unaligned one, typically from ~10−5 S/m to ~10−2 S/m

    The Preparation of Graphene Reinforced Poly(vinyl alcohol) Antibacterial Nanocomposite Thin Film

    No full text
    Methylated melamine grafted polyvinyl benzylchloride (mm-g-PvBCl) was prepared which was used as additive in poly(vinyl alcohol) (PVA) and graphene nanosheets (GNs) were used to reinforce the mechanical strength. Using casting method, antimicrobial nanocomposite films were prepared with the polymeric biocide loading lever of 1 wt%, 5 wt%, and 10 wt%. Thermogravimetric analysis (TGA) characterization revealed the 2.0 wt% of graphene content in resultant nanocomposites films. XRD showed that the resultant GNs 2 theta was changed from 16.6 degree to 23.3 degree. Using Japanese Industry Standard test methods, the antimicrobial efficiency for the loading lever of 1 wt%, 5 wt%, and 10 wt% was 92.0%, 95.8%, and 97.1%, respectively, against gram negative bacteria E. coli and 92.3%, 99.6%, and 99.7%, respectively, against the gram positive S. aureus. These results indicate the prepared nanocomposite films are the promising materials for the food and drink package applications

    Quantum yield and lifetime data analysis for the UV curable quantum dot nanocomposites

    Get PDF
    The quantum yield (QY) and lifetime are the important parameters for the photoluminescent materials. The data here report the changes of the QY and lifetime for the quantum dot (QD) nanocomposite after the UV curing of the urethane acrylate prepolymer. The data were collected based on the water soluble CdTe QDs and urethane acrylate prepolymer. Colloidal QDs were in various concentration from 0.5×10−3 molL−1 to 10×10−3 molL−1, and 1% (wt%) 1173 was the photoinitiator. The QY before the curing was 56.3%, 57.8% and 58.6% for the QDs 510 nm, 540 nm and 620 nm, respectively. The QY after the curing was changed to 8.9%, 9.6% and 13.4% for the QDs 510 nm, 540 nm and 620 nm, respectively. Lifetime data showed that the lifetime was changed from 23.71 ns, 24.55 ns, 23.52 ns to 1.29 ns, 2.74 ns, 2.45 ns for the QDs 510 nm, 540 nm and 620 nm, respectively

    Electric-Field-Directed Parallel Alignment Architecting 3D Lithium-Ion Pathways within Solid Composite Electrolyte

    No full text
    It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic–polymer composite electrolytes mainly occur at ceramic particles and the ceramic–polymer interface. Herein, one facile strategy toward ceramic particles’ alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> particles and poly­(ethylene glycol) diacrylate in poly­(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte

    Stretchable and Waterproof Self-Charging Power System for Harvesting Energy from Diverse Deformation and Powering Wearable Electronics

    No full text
    A soft, stretchable, and fully enclosed self-charging power system is developed by seamlessly combining a stretchable triboelectric nanogenerator with stretchable supercapacitors, which can be subject to and harvest energy from almost all kinds of large-degree deformation due to its fully soft structure. The power system is washable and waterproof owing to its fully enclosed structure and hydrophobic property of its exterior surface. The power system can be worn on the human body to effectively scavenge energy from various kinds of human motion, and it is demonstrated that the wearable power source is able to drive an electronic watch. This work provides a feasible approach to design stretchable, wearable power sources and electronics
    corecore