19 research outputs found

    Diurnal Cycle Model of Lake Ice Surface Albedo : A Case Study of Wuliangsuhai Lake

    Get PDF
    Ice surface albedo is an important factor in various optical remote sensing technologies used to determine the distribution of snow or melt water on the ice, and to judge the formation or melting of lake ice in winter, especially in cold and arid areas. In this study, field measurements were conducted at Wuliangsuhai Lake, a typical lake in the semi-arid cold area of China, to investigate the diurnal variation of the ice surface albedo. Observations showed that the diurnal variations of the ice surface albedo exhibit bimodal characteristics with peaks occurring after sunrise and before sunset. The curve of ice surface albedo with time is affected by weather conditions. The first peak occurs later on cloudy days compared with sunny days, whereas the second peak appears earlier on cloudy days. Four probability density distribution functions—Laplace, Gauss, Gumbel, and Cauchy—were combined linearly to model the daily variation of the lake ice albedo on a sunny day. The simulations of diurnal variation in the albedo during the period from sunrise to sunset with a solar altitude angle higher than 5° indicate that the Laplace combination is the optimal statistical model. The Laplace combination can not only describe the bimodal characteristic of the diurnal albedo cycle when the solar altitude angle is higher than 5°, but also reflect the U-shaped distribution of the diurnal albedo as the solar altitude angle exceeds 15°. The scale of the model is about half the length of the day, and the position of the two peaks is closely related to the moment of sunrise, which reflects the asymmetry of the two peaks of the ice surface albedo. This study provides a basis for the development of parameterization schemes of diurnal variation of lake ice albedo in semi-arid cold regions

    Distributed event-triggered control for multi-agent formation stabilization

    Get PDF
    International audienceThis paper addesses the problem of formation control in multi-agent systems (MAS) and adopts an event-triggered strategy to reduce the number of communications between agents. For that purpose, to evaluate its control input, each agent maintains estimators of the states of the other agents. Communication is triggered when the discrepancy between the actual state of an agent and its estimate reaches some threshold. The impact of additive state perturbations is studied. A condition for the convergence of the MAS to a stable formation is studied. Simulations show the effectiveness of the proposed approach

    Structural Characterization and Physical Properties of Double Perovskite La2FeReO6+δ Powders

    No full text
    The structural, optical, dielectric, and magnetic properties of double perovskite La2FeReO6+δ (LFRO) powders synthesized by solid-state reaction method under CO reduced atmosphere are reported on in this paper. Reitveld refinements on the XRD data revealed that the LFRO powders crystallized in an orthogonal structure (Pbnm space group) with column-like morphology. The molar ratios of La, Fe, and Re elements were close to 2:1:1. XPS spectra verified the mixed chemical states of Fe and Re ions, and two oxygen species in the LFRO powders. The LFRO ceramics exhibited a relaxor-like dielectric behavior, and the associated activation energy was 0.05 eV. Possible origins of the dielectric relaxation behavior are discussed based on the hopping of electrons among the hetero-valence ions at B-site, oxygen ion hopping through the vacant oxygen sites, and the jumping of electrons trapped in the shallower level created by oxygen vacancy. The LFRO powders display room temperature ferromagnetism with Curie temperature of 746 K. A Griffiths-like phase was observed in the LFRO powders with a Griffiths temperature of 758 K. The direct optical band gap of the LFRO powders was 2.30 eV, deduced from their absorption spectra, as confirmed by their green photoluminescence spectra with a strong peak around 556 nm

    Unraveling the Structural, Dielectric, Magnetic, and Optical Characteristics of Nanostructured La<sub>2</sub>NiMnO<sub>6</sub> Double Perovskites

    No full text
    Double perovskite La2NiMnO6 (LNMO) nanoparticles and nanorods were synthesized via a hydrothermal process, where only aqueous inorganic solvents are used to regulate the microscopic morphology of the products without using any organic template. They crystallized in a monoclinic (P21/n) double perovskite crystal structure. The LNMO nanoparticles exhibited spherical morphology with an average particle size of 260 ± 60 nm, and the LNMO nanorods had diameters of 430 ± 120 nm and length about 2.05 ± 0.65 ÎŒm. Dual chemical oxidation states of the Ni and Mn ions were confirmed in the LNMO samples by X-ray photoelectron spectroscopy. Strong frequency dispersion dielectric behavior observed in the LNMO ceramics, is attributed to the space charge polarization and the oxygen vacancy induced dielectric relaxation. A ferroelectric—paraelectric phase transition appearing near 262 K (or 260 K) in the LNMO ceramics prepared from nanoparticles (or nanorods) was identified to be a second-order phase transition. The LNMO samples are ferromagnetic at 5 K but paramagnetic at 300 K. The LNMO nanoparticles had larger saturation magnetization (MS = 6.20 ÎŒB/f.u. @ 5 K) than the LNMO nanorods (MS = 5.68 ÎŒB/f.u.) due to a lower structural disorder in the LNMO nanorods. The semiconducting nature of the nanostructured LNMO with an optical band gap of 0.99 eV was revealed by the UV–visible absorption spectra. The present results enable the nanostructured LNMO to be a promising candidate for practical spintronic devices

    B-Site Fe/Re Cation-Ordering Control and Its Influence on the Magnetic Properties of Sr<sub>2</sub>FeReO<sub>6</sub> Oxide Powders

    No full text
    Double-perovskite oxide Sr2FeReO6 (SFRO) powders have promising applications in spintronics due to their half-metallicity and high Curie temperature. However, their magnetic properties suffer from the existence of anti-site defects (ASDs). Here, we report on the synthesis of SFRO powders by the sol–gel process. The B-site cationic ordering degree (η) and its influence on magnetic properties are investigated. The results demonstrate that the η value is well controlled by the annealing temperature, which is as high as 85% when annealing at 1100 °C. However, the annealing atmospheres (e.g., N2 or Ar) have little effect on the η value. At room temperature, the SFRO powders crystallize in a tetragonal crystal structure (space group I4/m). They have a relatively uniform morphology and the molar ratios of Sr, Fe, and Re elements are close to 2:1:1. XPS spectra identified that Sr, Fe, and Re elements presented as Sr2+, Fe3+, and Re5+ ions, respectively, and the O element presented as O2-. The SFRO samples annealed at 1100 °C in N2, exhibiting the highest saturation magnetization (MS = 2.61 ÎŒB/f.u. at 2 K), which was ascribed to their smallest ASD content (7.45%) with an anti-phase boundary-like morphology compared to those annealed at 1000 °C (ASDs = 10.7%) or 1200 °C (ASDs = 10.95%)

    TaF<sub>4</sub>: A Novel Two-Dimensional Antiferromagnetic Material with a High NĂ©el Temperature Investigated Using First-Principles Calculations

    No full text
    The structural, electronic, and magnetic properties of a novel two-dimensional monolayer material, TaF4, are investigated using first-principles calculations. The dynamical and thermal stabilities of two-dimensional monolayer TaF4 were confirmed using its phonon dispersion spectrum and molecular dynamics calculations. The band structure obtained via the high-accuracy HSE06 (Heyd–Scuseria–Ernzerhof 2006) functional theory revealed that monolayer two-dimensional TaF4 is an indirect bandgap semiconductor with a bandgap width of 2.58 eV. By extracting the exchange interaction intensities and magnetocrystalline anisotropy energy in a J1-J2-J3-K Heisenberg model, it was found that two-dimensional monolayer TaF4 possesses a NĂ©el-type antiferromagnetic ground state and has a relatively high NĂ©el temperature (208 K) and strong magnetocrystalline anisotropy energy (2.06 meV). These results are verified via the magnon spectrum
    corecore