10 research outputs found
Customization of functional MOFs by a modular design strategy for target applications
Herein, we propose a versatile âfunctional modular assemblyâ strategy for customizing MOFs that allows installing the desired functional unit into a host material. The functional unit could be switched according to different applications. MOF-808, a highly stable Zr-MOF containing dangling formate groups, was selected as a host material for demonstration. Functional molecules with carboxyl connectors can be directly inserted into MOF-808 to form functional modular MOFs (FM-MOFs) through single substitution, while for those without carboxyl connectors, a pre-designed convertor was grafted firstly followed by the functional molecules in a stepwise manner. A series of tailor-made FM-MOFs were generated and show excellent performance toward different applications, such as adsorption, catalysis, fluorescent sensing, electrochemistry, and the control of surface wettability. On the other hand, the functional units on the FM-MOFs can switch freely and completely via full interconversion, as well as partly to construct multivariate MOFs (MTV-MOFs). Therefore, this strategy provides a benchmark for rapid customization of functional MOFs for diverse applications that can realize the rapid modular design of materials
Emergence of mosaic recombinant strains potentially associated with vaccine JXA1-R and predominant circulating strains of porcine reproductive and respiratory syndrome virus in different provinces of China
Abstract Background Porcine reproductive and respiratory syndrome virus (PRRSV) has caused several outbreaks in China since 2006. However, the genetic diversity of PRRSV in China has greatly increased by rapid evolution or recombination events. Modified live-attenuated vaccines are widely used to control this disease worldwide. Although the risk and inefficacy of the vaccine has been reported, the genetic diversity between epidemic field strains and vaccine strains in China has not been completely elucidated. Methods A total of 293 clinical samples were collected from 72 pig farms in 16 provinces of China in 2015 for PRRSV detection. A total of 28 infected samples collected from 24 pig farms in nine provinces were further selected for immunohistochemical analysis and whole genome sequencing of PRRSV. Phylogenetic analysis and recombination screening were performed with the full genome sequences of the 28 strains and other 623 reference sequences of PRRSV. Results Of 293 clinical samples, 117 (39.93%) were positive for PRRSV by RT-PCR. Phylogenetic results showed that the 28 strains were nested into sublineage 10.5 (classic highly pathogenic [HP]-PRRSV), sublineage 10.6 (HP-PRRSV-like strains and related recombinants), sublineage 10.7 (potential vaccine JXA1-R-like strains), and lineage 9 (NADC30-like strains and recombinants of NADC30-like strains), respectively, suggesting that multiple subgenotypes of PRRSV currently circulate in China. Recombination analyses showed that nine of 28 isolates and one isolate from other laboratory were potential complicated recombinants between the vaccine JXA1-R-like strains and predominant circulating strains. Conclusions These results indicated an increase in recombination rates of PRRSV under current vaccination pressure and a more pressing situation for PRRSV eradication and control in China
Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO
Designing highly selective and energy-efficient electrocatalysts to minimize the competitive hydrogen evolution reaction in the electrochemical reduction of aqueous CO2 remains a challenge. In this study, we report that doping Pd with a small amount of Te could selectively convert CO2 to CO with a low overpotential. The PdTe/few-layer graphene (FLG) catalyst with a Pd/Te molar ratio of 1â:â0.05 displayed a maximum CO faradaic efficiency of about 90% at â0.8 V (vs. a reversible hydrogen electrode, RHE), CO partial current density of 4.4 mA cmâ2, and CO formation turnover frequency of 0.14 sâ1 at â1.0 V (vs. a RHE), which were 3.7-, 4.3-, and 10-fold higher than those of a Pd/FLG catalyst, respectively. Density functional calculations showed that Te adatoms preferentially bind at the terrace sites of Pd, thereby suppressing undesired hydrogen evolution, whereas CO2 adsorption and activation occurred on the high index sites of Pd to produce CO
A novel magnesium alloy with enhanced mechanical property, degradation behavior and cytocompatibility
A novel magnesium alloy with enhanced mechanical property, degradation behavior and cytocompatibilit
Atomic Indium Catalysts for Switching CO Electroreduction Products from Formate to CO
Electrochemical reduction of CO to chemicals and fuels is an interesting and attractive way to mitigate greenhouse gas emissions and energy shortages. In this work, we report the use of atomic In catalysts for CO electroreduction to CO. The atomic In catalysts were anchored on N-doped carbon (InA/NC) through pyrolysis of In-based metalâorganic frameworks (MOFs) and dicyandiamide. It was discovered that InA/NC had outstanding performance for selective CO production in the mixed electrolyte of ionic liquid/MeCN. It is different from those common In-based materials, in which formate/formic acid is formed as the main product. The faradaic efficiency (FE) of CO and total current density were 97.2% and 39.4 mA cm, respectively, with a turnover frequency (TOF) of âŒ40âŻ000 h. It is one of the highest TOF for CO production to date for all of the catalysts reported. In addition, the catalyst had remarkable stability. Detailed study indicated that In/NC had higher double-layer capacitance, larger CO adsorption capacity, and lower interfacial charge transfer resistance, leading to high activity for CO reduction. Control experiments and theoretical calculations showed that the InâN site of In/NC is not only beneficial for dissociation of COOH* to form CO but also hinders formate formation, leading to high selectivity toward CO instead of formate