262 research outputs found

    Automatic citrus canker detection from leaf images captured in field

    Get PDF
    Citrus canker, a bacterial disease of citrus tree leaves, causes significant damage to citrus production worldwide. Effective and fast disease detection methods must be undertaken to minimize the losses of citrus canker infection. In this paper, we present a new approach based on global features and zone-based local features to detect citrus canker from leaf images collected in field which is more difficult than the leaf images captured in labs. Firstly, an improved AdaBoost algorithm is used to select the most significant features of citrus lesions for the segmentation of the lesions from their background. Then a canker lesion descriptor is proposed which combines both color and local texture distribution of canker lesion zones suggested by plant phytopathologists. A two-level hierarchical detection structure is developed to identify canker lesions. Thirdly, we evaluate the proposed method and its comparison with other approaches, and the experimental results show that the proposed approach achieves similar classification accuracy as human experts

    Fast Mode Decision for 3D-HEVC Depth Intracoding

    Get PDF
    The emerging international standard of high efficiency video coding based 3D video coding (3D-HEVC) is a successor to multiview video coding (MVC). In 3D-HEVC depth intracoding, depth modeling mode (DMM) and high efficiency video coding (HEVC) intraprediction mode are both employed to select the best coding mode for each coding unit (CU). This technique achieves the highest possible coding efficiency, but it results in extremely large encoding time which obstructs the 3D-HEVC from practical application. In this paper, a fast mode decision algorithm based on the correlation between texture video and depth map is proposed to reduce 3D-HEVC depth intracoding computational complexity. Since the texture video and its associated depth map represent the same scene, there is a high correlation among the prediction mode from texture video and depth map. Therefore, we can skip some specific depth intraprediction modes rarely used in related texture CU. Experimental results show that the proposed algorithm can significantly reduce computational complexity of 3D-HEVC depth intracoding while maintaining coding efficiency

    Cardioprotective Effects of Salvianolic Acid A on Myocardial Ischemia-Reperfusion Injury In Vivo and In Vitro

    Get PDF
    Salvianolic acid A (SAA), one of the major active components of Danshen that is a traditional Chinese medicine, has been reported to possess protective effect in cardiac diseases and antioxidative activity. This study aims to investigate the cardioprotection of SAA in vivo and in vitro using the model of myocardial ischemia-reperfusion in rat and hydrogen peroxide (H2O2)-induced H9c2 rat cardiomyoblasts apoptosis. It was found that SAA significantly limited infarct size of ischemic myocardium when given immediately prior to reperfusion. SAA also significantly suppressed cellular injury and apoptotic cell death. Additionally, the results of western blot and phospho-specific antibody microarray analysis showed that SAA could up-regulate Bcl-2 expression and increase the phosphorylation of proteins such as Akt, p42/p44 extracellular signal-related kinases (Erk1/2), and their related effectors. The phosphorylation of those points was related to suppress apoptosis. In summary, SAA possesses marked protective effect on myocardial ischemia-reperfusion injury, which is related to its ability to reduce myocardial cell apoptosis and damage induced by oxidative stress. The protection is achieved via up-regulation of Bcl-2 expression and affecting protein phosphorylation. These findings indicate that SAA may be of value in cardioprotection during myocardial ischemia-reperfusion injury, which provide pharmacological evidence for clinical application

    Informed anytime fast marching tree for asymptotically-optimal motion planning

    Get PDF
    In many applications, it is necessary for motion planning planners to get high-quality solutions in high-dimensional complex problems. In this paper, we propose an anytime asymptotically-optimal sampling-based algorithm, namely Informed Anytime Fast Marching Tree (IAFMT*), designed for solving motion planning problems. Employing a hybrid incremental search and a dynamic optimal search, the IAFMT* fast finds a feasible solution, if time permits, it can efficiently improve the solution toward the optimal solution. This paper also presents the theoretical analysis of probabilistic completeness, asymptotic optimality, and computational complexity on the proposed algorithm. Its ability to converge to a high-quality solution with the efficiency, stability, and self-adaptability has been tested by challenging simulations and a humanoid mobile robot

    Structure and Properties of Gallic Acid Epoxy Modified Gelatin

    Get PDF
    In this study, gallic acid (GA) was used to synthesize the gallic acid epoxy (GAE) for the chemical modification of gelatin. The chemical structure, hydration properties, thermal stability, and mechanical properties of GAE modified gelatin (GAEG) were evaluated. It was found that the epoxy group of GAE reacted with the primary amine group of gelatin to form C-N bond and covalent cross-linking. The swelling ratio of GAEG in water was increased by about 5 times. With the cross-linking degree increased from 41.13% to 72.68%, the swelling ratio decreased from 7831% to 6448%. While the gelatin dissolved completely in water within 24 h, the GAEG film remained intact for 7 days, and the disintegration rate decreased significantly with the increase of cross-linking degree. The water contact angle decreased from 88.01° to 59.87° after the modification, indicating increased hydrophilicity. The reduction of dehydration rate and the increase in total dehydration ratio suggested that the water retention capacity has been improved after the modification. The denaturation temperature increased from 55.0 ℃ to 61.7 ℃, and the thermal decomposition temperature increased from 240 ℃ to 274 ℃, with a relative decrease in thermal weight loss. The modification treatment led to a slight decrease in mechanical properties. This study demonstrated that GAE improved the hydration properties and thermal stability of gelatin, contributed to the application of gelatin as water retaining agent and stabilizer in food industry

    Light influences the effect of exogenous ethylene on the phenolic composition of Cabernet Sauvignon grapes

    Get PDF
    The gaseous phytohormone ethylene (ETH) plays a key role in plant growth and development, and is a major regulator of phenolic biosynthesis. Light has long been known to influence phytohormone signaling transduction. However, whether light influences the effect of ETH on the phenolic composition of grapes (Vitis vinifera L.) is an open question. Here, the accumulation and composition of anthocyanins and non-anthocyanin phenolics were analyzed in Cabernet Sauvignon grapes under four treatments: light exposure with and without ETH treatment, and box-shading with and without ETH treatment. Both light and ETH promoted ripening, decreased the color index (L*, C*, and h*), and accelerated the color change from green to red and purplish red. Sunlight-exposed grapes had the highest contents of most anthocyanins, flavonols, flavan-3-ols, and hydroxybenzoic acids. In addition, light exposure increased the ratios of 3’5’-substituted/3’-substituted anthocyanins and flavonols, but decreased the ratios of methoxylated/non-methoxylated and acylated/non-acylated anthocyanins and flavan-3-ols. Notably, the effects of ETH were influenced by light exposure. Specifically, ETH treatment promoted anthocyanin and non-anthocyanin biosynthesis in light-exposed grapes, and their increasing multiples were remarkably higher under light-exposed conditions. Furthermore, ETH treatment decreased the ratios of methoxylated/non-methoxylated, 3’5’-substituted/3’-substituted, and acylated/non-acylated anthocyanins and flavan-3-ols in light-exposed grapes, each of which was increased by ETH treatment in shaded grapes. Fifteen differential phenolic components were identified through partial least-squares-discriminant analysis (PLS-DA). Among them, cyanidin-3-O-(cis-6-O-coumaryl)-glucoside, petunidin-3-O-(6-O-acetyl)-glucoside, petunidin-3-O-(trans-6-O-coumaryl)-glucoside, petunidin-3-O-glucoside, myricetin-3-O-galactoside, kaempferol-3-O-galactoside, and kaempferol-3-O-glucoside were the main differential components between ETH treatments under different light conditions. This study contributes to the understanding of the impact of ethylene treatment under dark and light conditions on phenolic synthesis in grape berries

    The association between retina thinning and hippocampal atrophy in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review

    Get PDF
    IntroductionThe retina is the “window” of the central nervous system. Previous studies discovered that retinal thickness degenerates through the pathological process of the Alzheimer’s disease (AD) continuum. Hippocampal atrophy is one of the typical clinical features and diagnostic criteria of AD. Former studies have described retinal thinning in normal aging subjects and AD patients, yet the association between retinal thickness and hippocampal atrophy in AD is unclear. The optical coherence tomography (OCT) technique has access the non-invasive to retinal images and magnetic resonance imaging can outline the volume of the hippocampus. Thus, we aim to quantify the correlation between these two parameters to identify whether the retina can be a new biomarker for early AD detection.MethodsWe systematically searched the PubMed, Embase, and Web of Science databases from inception to May 2023 for studies investigating the correlation between retinal thickness and hippocampal volume. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the study quality. Pooled correlation coefficient r values were combined after Fisher’s Z transformation. Moderator effects were detected through subgroup analysis and the meta-regression method.ResultsOf the 1,596 citations initially identified, we excluded 1,062 studies after screening the titles and abstract (animal models, n = 99; irrelevant literature, n = 963). Twelve studies met the inclusion criteria, among which three studies were excluded due to unextractable data. Nine studies were eligible for this meta-analysis. A positive moderate correlation between the retinal thickness was discovered in all participants of with AD, mild cognitive impairment (MCI), and normal controls (NC) (r = 0.3469, 95% CI: 0.2490–0.4377, I2 = 5.0%), which was significantly higher than that of the AD group (r = 0.1209, 95% CI:0.0905–0.1510, I2 = 0.0%) (p < 0.05). Among different layers, the peripapillary retinal nerve fiber layer (pRNFL) indicated a moderate positive correlation with hippocampal volume (r = 0.1209, 95% CI:0.0905–0.1510, I2 = 0.0%). The retinal pigmented epithelium (RPE) was also positively correlated [r = 0.1421, 95% CI:(−0.0447–0.3192), I2 = 84.1%]. The retinal layers and participants were the main overall heterogeneity sources. Correlation in the bilateral hemisphere did not show a significant difference.ConclusionThe correlation between RNFL thickness and hippocampal volume is more predominant in both NC and AD groups than other layers. Whole retinal thickness is positively correlated to hippocampal volume not only in AD continuum, especially in MCI, but also in NC.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, CRD42022328088

    Review—Recent Progress in Electrocatalysts for Oxygen Reduction Suitable for Alkaline Anion Exchange Membrane Fuel Cells

    Full text link
    Alkaline fuel cell technology has been reinvigorated since the recent rapid development and deployment of anion exchange membranes. Without the "acid-stability" requirement in low pH environments such as that of proton exchange membrane fuel cells, a much wider range of materials including noble metals, non-noble transition metals, and even metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media have been developed due to both thermodynamic and kinetic reasons. As compared to the rapidly increasing number of reports on the development of novel catalyst materials, the understanding of the reaction mechanisms of the various ORR electrocatalysts is quite insufficient, and the application and investigation in real alkaline anion exchange membrane fuel cells (AAEMFCs) is even scarcer. By reviewing the compositions, preparation methods, physiochemical properties and ORR performance of different categories of cathodic electrocatalysts that have emerged in the past few years, some common and intrinsic properties and factors that account for the superior activity of these materials may be extracted and summarized, which may further help to identify the reasons for the kinetic facility of the ORR in alkaline media. Some practical issues of utilization of the promising novel replacement materials for the state-of-the-art Pt-based cathodic electrocatalysts in AAEMFCs are pointed out. In addition to the progress on the development of novel materials with outstanding ORR activity, many and varied compositions and morphologies in one, two and three dimensions, scalable preparation technologies, low cost, and other unique properties, some feedback on the performance and especially the problems of their use as cathodes in AAEMFCs is urgently needed. Such feedback should provide guidelines for the design and manufacture of next-generation electrocatalysts and accelerate the application of AAEMFCs

    Progress in Understanding the Relationship between Diabetes and Host Intestinal Microbiota and Diet-Mediated Microbiota Regulation

    Get PDF
    Diabetes is a metabolic disease characterized by insulin secretion disorder. When serious, it can cause various complications (cardiovascular and cerebrovascular diseases, cataract and other eye diseases, kidney disease and cancer), bringing a huge economic burden to the society and families and torturing patients. The risk of diabetes is not only related to genes, living pressure and working environment, but also directly related to patients’ lifestyles and dietary habits. An unhealthy diet (high in fat and sugar) can induce the intestinal flora to produce adverse metabolites, which can in turn promote the occurrence and development of diabetes. Intestinal flora imbalance is widespread in the pathogenesis of various types of diabetes. As an important factor influencing the intestinal flora, diet is not only essential to maintain body functions, but also can contribute to intestinal immunity. Regulation of the intestinal environment through diet is expected to be an effective preventive means and auxiliary therapy for diabetes. By synthesizing the existing literature, this article discusses the features of the intestinal flora and the mechanism of the effect of diet-mediated regulation of the intestinal flora on diabetes based on systematic medical theory, and reviews the role scientific diet plays in regulating intestinal homeostasis and immunity and consequently reducing the incidence and complications of diabetes. We hope that this review will provide a basis for early diagnosis and prevention and adjuvant treatment of diabetes
    corecore