
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

  
Abstract—In many applications, it is necessary for 

motion planning planners to get high-quality solutions in 
high-dimensional complex problems. In this paper, we 
propose an anytime asymptotically-optimal 
sampling-based algorithm, namely Informed Anytime Fast 
Marching Tree (IAFMT*), designed for solving motion 
planning problems. Employing a hybrid incremental search 
and a dynamic optimal search, the IAFMT* fast finds a 
feasible solution, if time permits, it can efficiently improve 
the solution toward the optimal solution. This paper also 
presents the theoretical analysis of probabilistic 
completeness, asymptotic optimality, and computational 
complexity on the proposed algorithm. Its ability to 
converge to a high-quality solution with the efficiency, 
stability, and self-adaptability has been tested by 
challenging simulations and a humanoid mobile robot.  
 

Index Terms—Asymptotic optimality, fast marching tree, 
informed anytime algorithm, motion planning 

I. INTRODUCTION 
OTION planning is such a fundamental research topic in 
robotics that it is widely applied to industrial robots, 

medical robots, bionic robots, and smart vehicles [1]-[6]. Hence, 
motion planning methods are still of high scientific interest, 
particularly for high-dimensional complex motion planning 
problems. Motion planning aims to search collision-free paths 
guiding robots from an initial node to a goal region in a 
configuration-space (C-space) full of obstacles [7], [8]. 
Arguably, sampling-based methods, such as Rapidly-exploring 
Random Trees (RRT) [9], Probabilistic Roadmaps (PRM) [10], 
and their variants [11]-[13], are among the most popular and 
widespread methods available in practical applications. There 
are natural advantages for sampling-based methods to solve 
high-dimensional problems as they avoid the explicit 
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construction of the C-space by randomly sampling [14], [15].  
Efforts to find high-quality solutions, which quality can be 

measured according to length, clearance, smoothness, and 
energy, lead to asymptotically-optimal (AO) methods. A 
high-quality solution is a path whose cost is lower than the 
given cost threshold or close to the cost of the optimal solution. 
The optimal solution is the path with the lowest cost in a 
C-space. Methods with asymptotic optimality, such as RRT* 
and PRM* [16], are able to asymptotically converge to the 
optimal solution as the number of samples goes to infinity. 
Whether the optimal solution can be converged is usually 
concerned in theory, while in practical applications we focus on 
obtaining high-quality solutions, not the optimal solution, 
because it is difficult for motion planning methods to converge 
to the optimal solution in limited runtime and computational 
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Fig. 1.  Solutions of motion planning provided by FMT*. Let 𝑛𝑛 denote 
the number of samples and 𝐽𝐽  is path cost in C-space.  (a) Failed 
planning: 𝑛𝑛 = 1000, 𝐽𝐽 = ∞. (b) A feasible path: 𝑛𝑛 = 3000, 𝐽𝐽 = 1783. (c) 
A high-quality path: 𝑛𝑛 = 15000, 𝐽𝐽 = 1616. (d) Change the goal node in 
the 2D environment: 𝑛𝑛 = 500, 𝐽𝐽 = 1698. (e) A high-quality path: 𝑛𝑛 =
15000, 𝐽𝐽 = 1295. (f) Change the goal node in the 3D environment: 𝑛𝑛 =
5000, 𝐽𝐽 = 687. 
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resources. 

For high-dimensional complex problems, sampling-based 
AO methods may not consider the efficiency and stability to 
achieve high-quality solutions [17], [18]. The informed 
sampling technique is introduced to AO methods, such as 
Informed RRT* [19] and Batch Informed Trees (BIT*) [20], to 
reduce computational burden by defining the sampling region 
as a hyper-ellipsoid for finding a high-quality solution. Fast 
Marching Trees (FMT*) [21] performs a “lazy” dynamic 
programming recursion on a batch of random samples to 
generate a low-cost tree as its roadmap. It is capable of solving 
high-dimensional complex problems efficiently, especially in 
scenarios where collision-checking is expensive, if the number 
of samples is reasonable. However, when the number of 
samples is small, FMT* is difficult to obtain high-quality 
solutions, sometimes it even fails to converge, as shown in Fig. 
1(a) and (b). FMT* will lose the advantage of computational 
efficiency if the number of samples is large, as presented in Fig. 
1(c). 

For different problems, it is hard for motion planning 
methods without self-adaptability to fast converge to 
high-quality solutions, which means that the reasonable 
parameter values of a method may be completely different 
when solving simple problems and complex problems 
respectively. In short, methods with self-adaptability can 
automatically tune parameters as requirements change. For 
example, the performance of FMT* and its variants [22], [23] 
heavily depends on the number of samples, which leads to lack 
of self-adaptability for the methods. The reasonable number of 
samples may be several thousand in 2D environments, while 
that could be tens of thousands in 3D environments, as shown 
in Fig. 1(e), even in the same environment, the different number 
of samples are needed to solve problems with different levels of 
difficulty, as shown in Fig. 1(d) and (f). It is not easy to 
determine the reasonable number of samples for an unfamiliar 
problem. Some AO methods have anytime performance 
leading to self-adaptability, named anytime AO methods, such 
as RRT*, PRM*, and their variants [24]-[26]. Anytime 
methods provide any solution as quickly as possible and yield 
higher-quality solutions if time permits [27], [28]. Anytime AO 
methods fast search for an initial solution and asymptotically 
improve the solution toward the optimal solution. Motion 
Planning using Lower Bounds (MPLB) [29] is a quasi-anytime 
algorithm by solving a series of independent problems and 
better solutions are only returned after a sub-problem is solved. 

This paper presents an anytime AO algorithm, namely 
Informed Anytime Fast Marching Tree (IAFMT*). IAFMT* 
extends FMT* to an anytime algorithm by designing a hybrid 
incremental search and a dynamic optimal search, in addition, 
the informed sampling technique is employed to refine 
efficiency. The hybrid incremental search integrates the batch 
sampling search, like FMT*, and the single sampling search, 
like RRT*, to build a low-cost spanning tree, which balances 
the efficiency of the batch sampling search and the flexibility of 
the single sampling search. As we know the “non-lazy” search 
tends to find a high-quality solution by taking lots of 
computational resources, while the “lazy” search efficiently 

obtains a feasible solution. The proposed dynamic optimal 
search considers a tradeoff between the “non-lazy” and “lazy” 
searches to fast improve a spanning tree and it achieves a 
high-quality solution. Additionally, this paper gives the 
theoretical analysis on the IAFMT* in depth, such as the 
analysis of probabilistic completeness, asymptotic optimality, 
and computational complexity. This paper also 
comprehensively evaluates the performance of the proposed 
algorithm by a series of 2D, 3D simulations, and real-world 
experimental tests. The experimental results show that the 
proposed algorithm, IAFMT*, has the ability to converge to a 
high-quality solution with the efficiency, stability, and 
self-adaptability when compared with the state-of-the-art 
algorithms, namely PRM*, Informed RRT*, and FMT*. 

Our contribution can be summarized that 
1) This paper presents an anytime sampling-based AO 

algorithm, namely IAFMT*, which is used to solve 
high-dimensional complex motion planning problems and 
get high-quality solutions. 

2) We propose a strategy that balances the benefits of the 
batch and single sampling searches, the “non-lazy” and 
“lazy” searches, which makes IAFMT* efficient, stable, 
and self-adaptive. 

3) In order to support the proposed algorithm in theory, we 
provide the analysis of probabilistic completeness, 
asymptotic optimality, and computational complexity. 

4) This paper comprehensively evaluates the performance of 
IAFMT* for solving high-dimensional complex problems 
by simulations and a humanoid mobile robot. 

This paper is organized as follows. In Section II, the problem 
is formally defined. Section III introduces the proposed 
algorithm, IAFMT*. The theoretical analysis of IAFMT* is 
provided in Section IV. Next, Section V presents the results of 
the simulation and experiments. Finally, Section VI concludes 
this paper and gives future research directions. 

II. PROBLEM FORMULATION 
Let 𝒳𝒳 ⊆ ℝ𝑑𝑑 and 𝒳𝒳free ⊂ 𝒳𝒳 be a d-dimensional C-space and 

the obstacle-free space, respectively. Let 𝑥𝑥init ∈ 𝒳𝒳free denote 
the initial node and 𝒳𝒳goal ⊂ 𝒳𝒳free be the set of goal nodes. A 
feasible path to the motion planning problem can be denoted by 
𝜎𝜎: [0,1] ⟼𝒳𝒳  if 𝜎𝜎(𝜏𝜏) ∈ 𝒳𝒳free , where  ∀𝜏𝜏 ∈ [0,1] , which 
means that the initial node 𝑥𝑥init connects to any node 𝑥𝑥goal ∈
𝒳𝒳goal through free space. Let Σ be the set of all feasible paths 
and 𝐽𝐽(𝜎𝜎) be the path cost according to Euclidean metric in 𝒳𝒳. 

The optimal motion planning problem can be described that 
given a path cost function 𝐽𝐽: Σ ↦ ℝ ≥ 0, finding the optimal 
solution 𝜎𝜎∗ satisfies  

 

𝜎𝜎∗ = arg min𝜎𝜎∈Σ �𝐽𝐽(𝜎𝜎)�
𝜎𝜎(0) = xinit,𝜎𝜎(1) = xgoal,
∀𝜏𝜏 ∈ [0,1],𝜎𝜎(𝜏𝜏) ∈ 𝒳𝒳free  

�.  (1) 

 
This paper will interchangeably refer to points in 𝒳𝒳 as nodes 

or samples. 
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III. INFORMED ANYTIME FAST MARCHING TREE 

We now present the Informed Anytime Fast Marching Tree 
algorithm, namely IAFMT*, described in the pseudo-code from 
Algorithm 1 to 5.   

A. Algorithm Overview 
It is necessary to introduce some notions and functions 

before describing IAFMT*. 𝑉𝑉𝑖𝑖  is the set of nodes including 
𝑥𝑥init , 𝑥𝑥goal , and batch random samples n generated by 
SampleFree(𝑛𝑛). 𝑇𝑇 = (𝑉𝑉,𝐸𝐸) denotes a spanning tree, where 𝑉𝑉 
and E are the tree-node and tree-edge sets, respectively. 𝑉𝑉u is 
the unvisited node set where the nodes are not added to the 
tree. 𝑉𝑉op contains the open nodes that may be expanded on the 
tree. 𝑉𝑉c is the closed node set where there are no unvisited nodes 
near each tree node. Let  Near(𝑉𝑉space, 𝑧𝑧, 𝑟𝑟𝑛𝑛) , i.e., 𝑁𝑁z , be a 
function which returns the node set that satisfies  

 
�𝑥𝑥 ∈ 𝑉𝑉space�‖𝑥𝑥 − 𝑧𝑧‖ < 𝑟𝑟𝑛𝑛},                   (2) 

 
where 𝑉𝑉space is the set of all nodes in the current C-space, 𝑧𝑧 is 
an open node selected for expansion, and 𝑟𝑟𝑛𝑛 denotes the search 
radius.. The search radius 𝑟𝑟𝑛𝑛 [21] is  

 

𝑟𝑟𝑛𝑛 = (1 + 𝜂𝜂) ∙ 2 �1
𝑑𝑑
�
1
𝑑𝑑 �

𝜇𝜇�𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�

𝜁𝜁𝑑𝑑
�
1
𝑑𝑑
�log𝑛𝑛

𝑛𝑛
�
1
𝑑𝑑,            (3) 

 
where 𝜂𝜂 > 0 is a small constant, 𝜇𝜇(∙)  denotes the Lebesgue 
measure, and 𝜁𝜁𝑑𝑑  is the volume of the unit ball in the 
d-dimensional Euclidean space. Cost𝑇𝑇(𝑥𝑥) returns the shortest 
path cost from 𝑥𝑥init to 𝑥𝑥 on the tree, i.e., the lowest-cost value 
for 𝑥𝑥. 

We establish the IAFMT* algorithm in Algorithm 1. The 
IAFMT* algorithm first determines 𝑉𝑉𝑖𝑖  by random uniform 
sampling, then it initializes a tree and other parameters by the 
function Initialize(𝑉𝑉𝑖𝑖 ,𝑉𝑉u,𝐸𝐸). HybridIncrementalSearch(𝑇𝑇, 𝑧𝑧) 
and DynamicOptimalSearch(𝑉𝑉𝑖𝑖−1,𝑇𝑇), which are different from 
FMT*, are introduced to search feasible paths and high-quality 
paths. HybridIncrementalSearch(𝑇𝑇, 𝑧𝑧)  first uses the batch 
sampling search to fast expand a low-cost spanning tree and try 
to find a feasible path 𝜎𝜎. And if a feasible path 𝜎𝜎 is not found, the 
function will perform the single sampling search to 
incrementally search for 𝜎𝜎 . DynamicOptimalSearch(𝑉𝑉𝑖𝑖−1,𝑇𝑇) 
employs the informed sampling technique to substantially reduce 
the search region which exists better paths and it asymptotically 
improves the tree 𝑇𝑇 to achieve a high-quality path by integrating 
the “non-lazy” and “lazy” searches. The IAFMT* algorithm 
returns 𝜎𝜎HQ when the cost of the current feasible path is less than 
or equal to the given cost threshold 𝐽𝐽given. 𝜎𝜎HQ is equal to 𝜎𝜎∗ 
when 𝐽𝐽given ≤ 𝐽𝐽(𝜎𝜎∗) and available time t is enough. 

There are three following contributions in IAFMT*: (1) 
IAFMT* extends FMT* to an anytime AO algorithm which can 
fast find a high-quality path adaptively in a given runtime; (2) 
The hybrid incremental search introduces the incremental 
single sampling search to the “lazy” batch sampling search of 
FMT* in order to have the ability to quickly get feasible paths 

as facing different motion planning problems; (3) The dynamic 
optimal search considers a tradeoff between the “non-lazy” and 
“lazy” searches to anytime asymptotically improve a spanning 
tree, which provides low-cost feasible paths and a high-quality 
path, even the optimal solution if conditions permit. 

B. Hybrid Incremental Search 
The hybrid incremental search aims to find an initial path 

efficiently and flexibly by integrating the batch sampling 
search and the single sampling search, as shown in Fig. 2(a)-(c). 
In Algorithm 2, based on the batch random samples n in 
Algorithm 1, the function ExpandTree(𝑧𝑧) efficiently builds a 
spanning tree, where 𝑧𝑧  consistently denotes the open node 
selected for expansion. Path�𝑥𝑥goal,𝑇𝑇� returns the lowest-cost 
feasible path from 𝑥𝑥init to 𝑥𝑥goal on the tree. However, the batch 
sampling search ExpandTree(𝑧𝑧) cannot always obtain a path. 
The single sampling search InsertNode(𝑇𝑇) flexibly connects 
one new node to the tree in order to assist the ExpandTree(𝑧𝑧) 
in finding an initial path.  

Algorithm 1 IAFMT* 
Require: Query (𝑥𝑥init, 𝑥𝑥goal), Search radius 𝑟𝑟𝑛𝑛, Sample count 𝑛𝑛0,  
                Available time t , Given cost threshold 𝐽𝐽given  
1 𝑉𝑉0 ← {𝑥𝑥init}, 𝑛𝑛 ← 𝑛𝑛0, 𝑖𝑖 ← 1 
2 while t do 
3     if 𝜎𝜎 = ∅ ∩ 𝜎𝜎HQ = ∅ then 
4         𝑉𝑉𝑖𝑖 ← 𝑉𝑉𝑖𝑖−1 ∪ SampleFree(𝑛𝑛); 𝑉𝑉u ← 𝑉𝑉𝑖𝑖\𝑉𝑉0; 𝐸𝐸 ← ∅ 
5         {𝑉𝑉op,𝑉𝑉c,𝑇𝑇, 𝑧𝑧,𝑁𝑁z} ← Initialize(𝑉𝑉𝑖𝑖 ,𝑉𝑉u,𝐸𝐸) 
6         {𝜎𝜎 ,𝑇𝑇} ← HybridIncrementalSearch(𝑇𝑇, 𝑧𝑧);   
7     if 𝜎𝜎 ≠ ∅ ∩ 𝜎𝜎HQ = ∅ then 
8         𝜎𝜎 ← DynamicOptimalSearch(𝑉𝑉𝑖𝑖−1,𝑇𝑇);  𝑖𝑖 ← 𝑖𝑖 + 1 
9         if Cost𝑇𝑇�𝑥𝑥goal� ≤ 𝐽𝐽given then 
10             return 𝜎𝜎HQ ← 𝜎𝜎 
11 return 𝜎𝜎 

 

               
                           (a)                                                (b) 

                            
                           (c)                                                 (d) 

                             
                          (e)                                                  (f) 
Fig. 2.  Search process of IAFMT*. The hybrid incremental search is 
presented in (a)-(c). The dynamic optimal search is shown in (d)-(f). (a) 
IAFMT* builds a search tree not reaching the goal node. (b) A new node 
is inserted to help the tree grow. (c) A feasible path is found. (d) IAFMT* 
prunes the tree and performs the informed sampling. (e) The tree is 
improved dynamically. (f) A high-quality path is got finally. 
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The ExpandTree(𝑧𝑧), as shown in Algorithm 3, is introduced 
from FMT* [21] except for RewireConnection(𝑥𝑥,𝑌𝑌near) used 
in the dynamic optimal search in Algorithm 5. The lowest-cost 
open node 𝑧𝑧 is selected to search for its neighbor unvisited node 
set 𝑋𝑋near.  For each 𝑥𝑥 ∈ 𝑋𝑋near, its neighbor open node set 𝑌𝑌near 
is got to determine the lowest-cost node 𝑦𝑦min. If the connection 
between 𝑦𝑦min  and 𝑥𝑥  is valid, the 𝑥𝑥  with 𝑦𝑦min  as its parent is 
sent to the set 𝑉𝑉op′  which will be added to the tree 𝑇𝑇 and 𝑉𝑉op 
once all 𝑥𝑥  samples in 𝑋𝑋near  have been considered. It is 
noteworthy that the 𝑥𝑥 samples in 𝑉𝑉op′ , not in 𝑉𝑉op, will not be 
connected to the remaining samples in 𝑋𝑋near. Thereafter, the 
node 𝑧𝑧  is removed from the open set 𝑉𝑉op  and added to the 
closed set 𝑉𝑉c. RewireConnection(𝑥𝑥,𝑌𝑌near) is able to improve 
the spanning tree if a path 𝜎𝜎 exists, we will explain it later. The 
batch sampling search returns Failure when 𝑉𝑉op  and 𝜎𝜎  are 
empty.  

The InsertNode(𝑇𝑇) shown in Algorithm 4 determines a new 
node 𝑠𝑠  from 𝒳𝒳free  and activates the neighbor closed nodes 
𝑊𝑊near. The new node is added to the existing tree in an optimal 
way. In addition, the new node can be regarded as a bridge 
between the closed nodes and the unvisited nodes to help the 
ExpandTree(𝑧𝑧) expand the tree again. 

C. Dynamic Optimal Search 
The proposed dynamic optimal search, balancing the 

features of the “lazy” and “non-lazy” searches, asymptotically 
improves the existing tree to find a better path until the optimal 
path is obtained, as shown in Fig. 2(d)-(f). We briefly list new 
functions and notions in Algorithm 5. 
Let Prune(𝑉𝑉𝑖𝑖−1, Cost𝑇𝑇�𝑥𝑥goal�) be the function that prunes the 
nodes and edges in 𝑉𝑉𝑖𝑖−1 by the informed technique determining 
a hyper-elliptic region in C-space, where 𝑉𝑉𝑖𝑖−1  only contains 
closed nodes and unvisited nodes. Better paths may exist in the 
hyper-elliptic region that satisfies 

 
‖𝑥𝑥 − 𝑥𝑥init‖ + �𝑥𝑥 − 𝑥𝑥goal� ≤ 𝐽𝐽(𝜎𝜎𝑖𝑖−1).             (4) 

 
Costig(𝑣𝑣) denotes the sum of the lowest cost from 𝑥𝑥init to v and 
from v to 𝑥𝑥goal , ignoring obstacles. The function 
InformedSampleFree(𝑛𝑛, Cost𝑇𝑇�𝑥𝑥goal�)  samples 𝑛𝑛  nodes in 
the hyper-elliptic region and the nodes not on the tree in 𝑉𝑉𝑖𝑖 are 
added to 𝑉𝑉u by UnconnectNodes(𝑉𝑉𝑖𝑖). 

Algorithm 5 shows the dynamic optimal search for IAFMT*. 
Prune(𝑉𝑉𝑖𝑖−1, Cost𝑇𝑇�𝑥𝑥goal�) deletes the nodes and edges outside 
the hyper-elliptic sub-region given by the informed technique 
and InformedSampleFree(𝑛𝑛, Cost𝑇𝑇�𝑥𝑥goal�)  provides 𝑛𝑛  new 
nodes in the sub-region. 𝑉𝑉u includes the new nodes in the i’th 
iteration and the unvisited nodes in the (i-1)’th iteration after 
executing UnconnectSamples(𝑉𝑉𝑖𝑖) . It is noted that all the 
closed nodes in 𝑉𝑉𝑖𝑖  are reopened when the dynamic optimal 
search is initialized. The dynamic optimal search 
asymptotically improves the tree and tries to find a lower-cost 
path at any time. The function RewireConnection(𝑥𝑥,𝑌𝑌near) in 
Algorithm 3 makes the  ExpandTree(𝑧𝑧)  can improve the 
searching tree. The  ExpandTree(𝑧𝑧) employs the “lazy” search, 
a neighbor unvisited node 𝑥𝑥 is simply skipped if a connection 
between the 𝑥𝑥 and its neighbor open node intersects an obstacle, 
to connect the nodes in 𝑉𝑉u to the tree (Alg. 3, line 2-8) as the 
dynamic optimal search is executed. Thereafter, the “non-lazy” 
search is conducted by the RewireConnection(𝑥𝑥,𝑌𝑌near)  to 
rewire every neighbor open node ℎ , which connects the 
lowest-cost node as its parent node.  

Algorithm 2 HybridIncrementalSearch(𝑇𝑇, 𝑧𝑧)   
1 while 𝑧𝑧 ≠ 𝑥𝑥goal do 
2     {𝑧𝑧,𝑇𝑇} ← ExpandTree(𝑧𝑧); 𝜎𝜎 ← Path�𝑥𝑥goal,𝑇𝑇� 
3     if 𝜎𝜎 ≠ ∅ then break 
4     if 𝜎𝜎 = ∅ ∩ 𝑉𝑉op = ∅ then 𝑇𝑇 ← InsertNode(𝑇𝑇)        
5 return {𝜎𝜎,𝑇𝑇} 

 
Algorithm 3 ExpandTree(𝑧𝑧) 
1 𝑉𝑉op′ ← ∅; 𝑋𝑋near ← 𝑁𝑁𝑧𝑧 ∩ 𝑉𝑉u 
2 for 𝑥𝑥 ∈ 𝑋𝑋near do 
3     𝑁𝑁𝑥𝑥 ← Near(𝑉𝑉\{𝑥𝑥}, 𝑥𝑥, 𝑟𝑟𝑛𝑛); 𝑌𝑌near ← 𝑁𝑁𝑥𝑥 ∩ 𝑉𝑉op 
4     𝑦𝑦min ← arg min𝑦𝑦 ∈ 𝑌𝑌near {Cost𝑇𝑇(𝑦𝑦) + Cost(𝑦𝑦, 𝑥𝑥)} 
5     if CollisionFree(𝑦𝑦min, 𝑥𝑥) then 
6         𝑇𝑇. parent(𝑥𝑥) ← 𝑦𝑦min 
7         𝑉𝑉op′ ← 𝑉𝑉op′ ∪ {𝑥𝑥}; 𝑉𝑉u ← 𝑉𝑉u\{𝑥𝑥} 
8 𝑉𝑉op ← �𝑉𝑉op ∪ 𝑉𝑉op′ �\{𝑧𝑧}; 𝑉𝑉c ← 𝑉𝑉c ∪ {𝑧𝑧} 
9 if 𝜎𝜎 ≠ ∅ then 𝑇𝑇 ← RewireConnection(𝑥𝑥,𝑌𝑌near) 
10 if 𝑉𝑉op = ∅ ∩ 𝜎𝜎 = ∅  then return Failure 
11 𝑧𝑧 ← arg min𝑦𝑦 ∈ 𝑉𝑉op {Cost𝑇𝑇(𝑦𝑦)} 
12 return {𝑧𝑧,𝑇𝑇} 
1 function RewireConnection(𝑥𝑥,𝑌𝑌near) 
2 𝐻𝐻near ← ∅ 
3 for 𝑦𝑦 ∈ 𝑌𝑌near do 
4     if 𝑇𝑇. parent(𝑦𝑦) ≠ 𝑇𝑇. parent(𝑥𝑥) then  
5         𝐻𝐻near ← 𝐻𝐻near ∪ {𝑦𝑦} 
6     for ℎ ∈ 𝐻𝐻near do 
7         if  Cost𝑇𝑇(𝑥𝑥) + Cost(𝑥𝑥, ℎ) < Cost𝑇𝑇(ℎ) then 
8             if CollisionFree(𝑥𝑥,ℎ) then 
9                 𝑇𝑇. parent(ℎ) ← 𝑥𝑥; UpdateChildCosts(ℎ) 
10 return 𝑇𝑇 

 

Algorithm 4 InsertNode(𝑇𝑇)   
1 𝑠𝑠 ← SampleFree(1); 𝑊𝑊near ←  Near(𝑉𝑉𝑖𝑖 , 𝑠𝑠, 𝑟𝑟𝑛𝑛) ∩ 𝑉𝑉c 
2 while 𝑊𝑊near ≠ ∅ do 
3      𝑥𝑥min ← arg min𝑥𝑥 ∈ 𝑊𝑊near {Cost𝑇𝑇(𝑥𝑥) + Cost(𝑥𝑥, 𝑠𝑠)} 
4      if CollisionFree(𝑥𝑥min, 𝑠𝑠) then 
5         𝑇𝑇. parent(𝑠𝑠) ← 𝑥𝑥min 
6         𝑉𝑉op ← 𝑉𝑉op ∪ {𝑥𝑥min}; 𝑧𝑧 ← 𝑥𝑥min 
7         break 
8     else then 𝑊𝑊near ← 𝑊𝑊near\{𝑥𝑥min} 
9 return 𝑇𝑇 

 

Algorithm 5 DynamicOptimalSearch(𝑉𝑉𝑖𝑖−1,𝑇𝑇)   
1 𝑉𝑉p ← Prune(𝑉𝑉𝑖𝑖−1, Cost𝑇𝑇�𝑥𝑥goal�);  𝑛𝑛 ← 1

2
× Size(𝑉𝑉p) 

2 𝑉𝑉𝑖𝑖 ← 𝑉𝑉p ∪ InformedSampleFree(𝑛𝑛, Cost𝑇𝑇�𝑥𝑥goal�) 
3 𝑉𝑉u ← UnconnectSamples(𝑉𝑉𝑖𝑖) 
4 {𝑉𝑉op,𝑉𝑉c,𝑇𝑇, 𝑧𝑧,𝑁𝑁𝑧𝑧} ← Initialize(𝑉𝑉𝑖𝑖 ,𝑉𝑉u,𝐸𝐸) 
5 while 𝑉𝑉op ≠ ∅ do 
6     {𝑧𝑧,𝑇𝑇} ← ExpandTree(𝑧𝑧); 𝜎𝜎 ← Path�xgoal,𝑇𝑇�   
7 return 𝜎𝜎 
1 function Prune(𝑉𝑉𝑖𝑖−1, Cost𝑇𝑇�xgoal�) 
2     𝑉𝑉p ← ∅ 
3     for 𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖−1 do 
4         if Costig(𝑣𝑣) ≤ Cost𝑇𝑇�𝑥𝑥goal� then 𝑉𝑉p ← 𝑉𝑉p ∪ {𝑣𝑣} 
5 return 𝑉𝑉p 

 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
IV. ANALYSIS 

A. Probabilistic Completeness 
The proposed algorithm IAFMT* ensures probabilistic 

completeness which means that the probability of solving a 
problem goes to 1 as the number of samples approaches infinity. 

Theorem 1. IAFMT* is a probabilistically complete 
algorithm. For a given motion planning problem, the 
probability of searching for a feasible path is as follows. 

 
lim
𝑛𝑛→∞

P��𝑥𝑥goal ∈ 𝑉𝑉𝑖𝑖 ∩ 𝒳𝒳goal in 𝑇𝑇�� = 1             (5) 
 
Proof. The following three arguments are used to prove the 

theorem 1: (1) A batch of nodes including 𝑥𝑥init and 𝑥𝑥goal are 
randomly sampled from 𝒳𝒳free; (2) The batch sampling search 
starts to build a searching tree from 𝑥𝑥init and expands the tree 
with the lowest-cost node in 𝑇𝑇 as the selected node 𝑧𝑧; (3) The 
single sampling search helps the batch sampling search explore 
the area where the distance from any node to the tree nodes is 
longer than 𝑟𝑟𝑛𝑛 . Therefore, IAFMT* performs the hybrid 
incremental search to steadily grow a searching tree outward 
from 𝑥𝑥init. The probability of finding a feasible path approaches 
to one as the number of samples 𝑛𝑛 goes to infinity. So it is stated 
that IAFMT* can guarantee probability completeness.   

B. Asymptotic Optimality 
Let 𝜎𝜎𝒯𝒯: [0,1] ⟼𝒳𝒳 be a tracing path that traces the path 𝜎𝜎. 

The cost of 𝜎𝜎𝒯𝒯 is bounded as 
 

𝐽𝐽(𝜎𝜎𝒯𝒯) ≤ (1 + ε)𝐽𝐽(𝜎𝜎),                            (6)  
 

when 𝜎𝜎𝒯𝒯 approaches 𝜎𝜎, where ε is a given small constant. 
Theorem 2. IAFMT* is an AO algorithm. For an optimal 

motion planning problem as defined in Section II, IAFMT* 
makes a feasible path 𝜎𝜎  converge in probability to the optimal 
path 𝜎𝜎∗ as 𝑛𝑛 → ∞. Specifically, for any ε > 0, 

 
lim
𝑛𝑛→∞

P[𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε)𝐽𝐽(𝜎𝜎∗)] = 0           (7) 
 
Proof. The proof is based on [21] that probability is bounded 

as 𝑂𝑂(𝑛𝑛−
𝜂𝜂
𝑑𝑑 log−

1
𝑑𝑑 𝑛𝑛) if 𝜎𝜎𝒯𝒯 cannot approach 𝜎𝜎 as 𝑛𝑛 → ∞. Finding 

a tracing path 𝜎𝜎𝒯𝒯′ by IAFMT* approximates 𝜎𝜎∗ with 
 

 𝐽𝐽�𝜎𝜎𝒯𝒯′� > (1 + ε/3)𝐽𝐽(𝜎𝜎∗).                     (8)  
 

Obviously, for any ε > 0, we can obtain the inequality 
 

 (1 + ε/3)𝐽𝐽�𝜎𝜎𝒯𝒯′� > (1 + ε/3)2𝐽𝐽(𝜎𝜎∗).            (9) 
 

As 𝑛𝑛 is large enough, a tracing path 𝜎𝜎𝒯𝒯 approaching 𝜎𝜎𝒯𝒯′ can 
be found and deduce the following inequality 
 

P[𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)2𝐽𝐽(𝜎𝜎∗)] < 
 P�𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)𝐽𝐽�𝜎𝜎𝒯𝒯′��,              (10) 

 
where 

 

 P�𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)𝐽𝐽�𝜎𝜎𝒯𝒯′�� = 𝑂𝑂(𝑛𝑛−
𝜂𝜂
𝑑𝑑 log−

1
𝑑𝑑 𝑛𝑛)   (11) 

 
by [21]. Let 𝜎𝜎𝒯𝒯 returned by IAFMT* approximate 𝜎𝜎∗, for any 
𝜂𝜂 ≥ 0, 

 
lim
𝑛𝑛→∞

P[𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)2𝐽𝐽(𝜎𝜎∗)] < 

lim
n→∞

O �𝑛𝑛−
𝜂𝜂
𝑑𝑑 log−

1
𝑑𝑑 𝑛𝑛� = 0.                         (12) 

 
If ε ≤ 3, the inequality can be obtained 

 
 (1 + ε/3)2 ≤ (1 + ε),                        (13) 

 
which follows that 

 
{𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε)𝐽𝐽(𝜎𝜎∗)} ⊂ 

{𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)2𝐽𝐽(𝜎𝜎∗)}.            (14) 
 

Hence,  
 

lim
𝑛𝑛→∞

P[𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε)𝐽𝐽(𝜎𝜎∗)] ≤   
lim
n→∞

P[J(σ𝒯𝒯) > (1 + ε/3)2J(σ∗)] = 0.       (15) 
 

If ε > 3, the above statement still holds due to the probability is 
monotone-decreasing about ε. Therefore, IAFMT* is an AO 
algorithm, as claimed. 

C. Computational Complexity 
The space complexity SC𝑛𝑛IAFMT∗  as the amount of memory 

space occupied by IAFMT* in iteration n. The time complexity 
TC𝑛𝑛IAFMT∗  is defined as the number of calls to the most 
time-consuming IAFMT* function in iteration n. 

Theorem 3. SC𝑛𝑛IAFMT∗ ∈ 𝑂𝑂(𝑛𝑛 log𝑛𝑛). 
Proof.  𝑉𝑉𝑖𝑖 , 𝑉𝑉u , 𝑉𝑉op , 𝑉𝑉c , 𝑉𝑉p , 𝐸𝐸  and 𝑇𝑇  require 𝑂𝑂(𝑛𝑛)  space, 

respectively. 𝑁𝑁𝑥𝑥 ,  𝑁𝑁𝑧𝑧 , 𝑋𝑋near , 𝑌𝑌near , 𝐻𝐻near  and 𝑊𝑊near  require 
𝑂𝑂(log𝑛𝑛)  space for one node, respectively. 𝑂𝑂(𝑛𝑛 log𝑛𝑛)  space 
will be occupied to save these variables for up to n nodes. 
Therefore, SC𝑛𝑛IAFMT∗ ∈ 𝑂𝑂(𝑛𝑛 log𝑛𝑛). 

Theorem 4. TC𝑛𝑛IAFMT∗ ∈ 𝑂𝑂(𝑛𝑛 log𝑛𝑛). 
Proof. Lines 2-8 are run 𝑂𝑂(log𝑛𝑛) times [21] in Algorithm 3 

and RewireConnection(∙) takes 𝑂𝑂(log𝑛𝑛) time for one node, 
so executing ExpandTree(∙)  once takes 𝑂𝑂(log𝑛𝑛)  time. 
Similarly, InsertNode(∙)  takes 𝑂𝑂(log𝑛𝑛)  time. 𝑂𝑂(log𝑛𝑛)  time 
is required to run HybridIncrementalSearch(∙)  and 
DynamicOptimalSearch(∙)  once, respectively. Hence, 
IAFMT* takes 𝑂𝑂(𝑛𝑛 log𝑛𝑛) time for 𝑛𝑛 nodes. 

V. EXPERIMENTS 

A. Experiments in OMPL Benchmark 
1) Simulation Setup 

We provide numerical experiments to evaluate the 
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performance of IAFMT* by comparing it with three 
state-of-the-art algorithms, namely PRM*, Informed RRT*, 
and FMT*. All algorithms are run on a 3.7GHz Intel Core 
i7-8700K CPU with 16GB of memory and tested in the Open 
Motion Planning Library (OMPL) [30] v1.4.0 benchmark. Four 
OMPL test scenarios are considered: two 2D scenarios, “Bug 
Trap” and “Maze”, in the 𝕊𝕊𝕊𝕊(2) C-space as well as two 3D 
scenarios, “Cubicles” and “Apartment”, in the 𝕊𝕊𝕊𝕊(3) C-space, 
as illustrated in Fig. 3. Setting runtime 𝑡𝑡given and cost threshold 
𝐽𝐽given in each scenario, as shown in Table I, can assess the 
ability of converging to a high-quality solution in limited 
resources by test algorithms. The default OMPL settings are 
employed for PRM* and Informed RRT*. We use the default 
value 𝑟𝑟𝑛𝑛 = 1.1 for FMT* and IAFMT*. 𝑛𝑛 = 1000 is given as 
the initial number of samples for IAFMT* in all scenarios. 

In order to compare the non-anytime AO algorithm FMT* 
with the other three anytime AO algorithms, we vary the given 
number of samples for FMT* in different scenarios. Sample 
counts are varied from 1000 to 10000 points in “Bug Trap” and 
“Maze”, from 1000 to 50000 points in “Cubicles”, from 1000 to 
80000 points in “Apartment”. FMT* runs 20 times at every 
sample counts. Other anytime AO algorithms run 50 times in 
each scenario.  
2) Results and Discussion 

The simulation results are shown in Table II, where 𝑡𝑡avg is 
the average runtime, 𝐽𝐽avg is the average path cost, and I-RRT* 
denotes Informed RRT*. In terms of computational efficiency, 
i.e., 𝑡𝑡avg, the performance of FMT* and IAFMT* substantially 
outperform PRM* and Informed RRT*, and that of IAFMT* is 
slightly better than FMT* in general. All algorithms can give 
planning paths with lower 𝐽𝐽avg  than 𝐽𝐽given  in each scenario 
except 𝐽𝐽avg of PRM* is 1914.18 in “Cubicles” scenario, which 
means that PRM* cannot find low-cost paths. Let Sol in Table 
II be the success rate of obtaining the feasible path by the 
algorithms. And Opt is the success rate of getting the 
high-quality path satisfying the given cost threshold 𝐽𝐽given by 
the algorithms. The success rate of obtaining the feasible path 
and high-quality path by IAFMT* is obviously higher than the 
other algorithms in all scenarios. In the most challenging 
“Apartment” scenario, the success rate of obtaining the 
high-quality path by IAFMT* is 64%, 70%, and 20.9% higher 
than PRM*, Informed RRT*, and FMT*, respectively, which 
demonstrates the advantages of IAFMT* in the capability of 
solving a high-quality solution. IAFMT* also shows the 
self-adaptive ability due to the success rates of achieving the 
feasible path and the high-quality path are 100% in all 
scenarios. 

Fig. 4 and Fig. 5 use the box plots to visually show the 
statistical information for computation time and path cost given 
by each algorithm, where the red dashed lines denote 𝐽𝐽given and 
the small circles are data outliers. As presented in Fig. 4, data 
points of path cost generated by IAFMT* are all under the line 
of 𝐽𝐽given, and the points are closer to the given line except in 
“Maze” scenario due to the low-cost paths are easy to be found 

TABLE I 
RUNTIME AND COST THRESHOLD 

Scenario 𝑡𝑡given(s) 𝐽𝐽given 
Bug Trap 10 130 
Maze 10 130 
Cubicles 100 1800 
Apartment 300 500 

 

                    
                      (a) Bug Trap                         (b) Maze                    

               
                      (c) Cubicles                           (d) Apartment 
Fig. 3.  The planning paths generated by IAFMT* in OMPL test 
scenarios. 
  

TABLE II 
SIMULATION RESULTS FOR ALL ALGORITHMS 

Scenario Algorithm 𝑡𝑡avg(s) 𝐽𝐽avg Sol (%) Opt (%) 

Bug Trap 

PRM* 4.53 129.21 98.0 98.0 
I-RRT* 1.40 129.29 100.0 100.0 
FMT* 0.55 127.38 90.0 79.5 
IAFMT* 0.41 128.91 100.0 100.0 

Maze 

PRM* 3.01 123.84 100.0 90.0 
I-RRT* 3.70 123.25 100.0 98.0 
FMT* 1.09 111.19 100.0 95.0 
IAFMT* 0.99 115.71 100.0 100.0 

Cubicles 

PRM* 100.11 1914.18 100.0 0.0 
I-RRT* 50.01 1796.74 100.0 98.0 
FMT* 12.13 1794.43 99.6 72.3 
IAFMT* 15.86 1795.66 100.0 100.0 

Apartment 

PRM* 199.86 497.86 60.0 36.0 
I-RRT* 150.80 419.97 30.0 30.0 
FMT* 59.78 449.10 87.5 79.1 
IAFMT* 43.69 471.78 100 100 

 

 
                      (a) Bug Trap                                (b) Maze 

 
                        (c) Cubicles                               (d) Apartment 
Fig. 4.  The path cost given by each algorithm. 
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by IAFMT. Hence, IAFMT* can save lots of computational 
resources while guaranteeing high-quality solutions. In 
addition, the data points of path cost by IAFMT* is denser in 
general, which indicates that the performance of obtaining 
high-quality paths is more stable than the other algorithms. The 
same features of data points are also shown in Fig. 5. The lower 
and denser data points of computation time given by IAFMT* 
show that IAFMT* has the capability to converge to a 
high-quality solution rapidly and stably.  

B. Experiments on Robot Planning Tasks 
1) Experiment Setup 

A simulation and a pick-and-place experiment on 
NEU-Robot equipped with 6-DOF manipulators, as shown in 
Fig. 6, are carried out to evaluate the performance of IAFMT* 
in application. We also use the four algorithms, run on a 
2.3GHz Intel Core i7-3610QE CPU with 8GB of memory, to 
plan the trajectory of the manipulators. For the end effectors of 
the manipulators, position precision and orientation precision 
are 0.01 meters and 0.1 radians. It is the same as before for the 
parameters of PRM* and Informed RRT*. The search radius 𝑟𝑟𝑛𝑛 
is also 1.1 for FMT* and IAFMT*. Each algorithm runs 10 
times to plan the trajectory for the manipulators. We do not set 

the cost threshold 𝐽𝐽given  in all experiments so as to test the 
ability of the algorithms to explore the high-quality trajectory.   

In the simulation of the right manipulator, as shown in Fig. 
7(a), the given runtime 𝑡𝑡given is 5 seconds and 50 randomized 
boxes are added to the environment as fixed obstacles. We give 
variable sample counts of FMT* from the order of 1000 to 5500 
points and set initial sample counts of IAFMT* to 1000 points. 
In addition, initial sample count 𝑛𝑛 is set from 1000 to 5000 in 
order to investigate the influence of variable 𝑛𝑛  on the 
performance of IAFMT*. The pick-and-place process of the 
left manipulator consists of four phases, as shown from (b) to (e) 
in Fig. 7. The given runtime is set to 5 seconds in the pick and 
reset phases, it is 1 second in the hold and place phases, and the 
total planning time is limited in 12 seconds. The sample counts 
for FMT* are given from 1000 to 10000 points and the initial 
sample counts for IAFMT* are always 1000 points.  

2) Results and Discussion 
The algorithms only need to plan one trajectory in the 

randomized simulated clutter scene, while they try to plan four 
different trajectories in succession in the real world, which 
means that the motion planning is failed if one of the four 
trajectories fails to plan. Experiment results in Table III show 
that the planning success rate of Informed RRT* is reduced by 
40% with the increase of problem difficulty, and IAFMT* 
performs well in all experiments due to its self-adaptive ability. 
Besides, the low computational load of IAFMT* leads to high 
convergence rate even on the low-end computer. It is noted that 
FMT* shows good performance similar to IAFMT*, but FMT* 
is not a self-adaptive algorithm as the parameter, i.e., the 
sample count, is tuned manually according to experience.  

 
                    (a) Bug Trap                                (b) Maze 

 
                      (c) Cubicles                                (d) Apartment 
Fig. 5.  The computation time consumed by each algorithm. 
  

 
Fig. 6.  NEU-Robot. 
  

                         
                              (a) Simulation                              (b) Pick         

                     
                (c) Hold                     (d) Place                   (e) Reset   
Fig. 7.  NEU-Robot motion planning realized by IAFMT*. 
  

TABLE III 
EXPERIMENT RESULTS FOR ROBOT MOTION PLANNING 

Experiment Success rate 
PRM* I-RRT* FMT* IAFMT* 

Simulation 8/10 6/10 8/10 8/10 
Pick-and-place 6/10 2/10 8/10 9/10 
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The ability of algorithms to explore the high-quality 
trajectory is presented in Fig. 8(a) and (b). The visual statistical 
information for path cost shows that the average and median 
values given by IAFMT* are the smallest than the other 
algorithms and its data points are denser, which indicates that 
IAFMT* can stably plan the high-quality trajectories. Fig. 9 
presents the performance of every algorithm in each phase of 
the pick-and-place experiment. All algorithms plan a similar 
trajectory in the hold and place phases, while IAFMT* 
performs well in the pick and reset phases due to its outstanding 
motion planning ability.  

Furthermore, we change the parameter of IAFMT* in the 
simulation to investigate the influence of variable initial sample 
counts on the performance. The success rate of the motion 
planning, solved by IAFMT* with initial sample count 𝑛𝑛 =
1000, is 80% and the planning success rate is 100% as 𝑛𝑛 is 
from 2000 to 5000. As shown in Fig. 10, when 𝑛𝑛 is set to 1000, 
IAFMT* can fast search for an initial path with the high cost 
and it iteratively improves the solution to yield a final path with 
the low cost until the computational time reaches the given 
runtime. With the increase of the initial sample counts, there are 
denser initial samples in the C-space, which leads to the 

increase in time of getting an initial path and the low cost of the 
initial path approaching the final-path cost. The experiment 
results show that IAFMT* with different initial sample counts 
can stably converge to a high-quality solution, which 
demonstrates that IAFMT* is highly self-adaptive.  

VI. CONCLUSION 
In this paper, an anytime asymptotically-optimal 

sampling-based algorithm, namely Informed Anytime Fast 
Marching Tree, is presented to solve motion planning problems, 
especially high-dimensional complex problems. This paper 
also gives the theoretical analysis of probabilistic completeness, 
asymptotic optimality, and computational complexity on the 
proposed algorithm. The challenging simulation and 
experimental results verify that the proposed algorithm can 
converge to a high-quality solution with an efficient, stable, and 
self-adaptive performance.  

In the future, we will introduce the GPU-based parallel 
computing technique into IAFMT* to achieve real-time motion 
planning and it is interesting to evaluate the performance of 
IAFMT* without knowledge of the geometry of obstacles and 
environments. 
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