
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Abstract—In many applications, it is necessary for

motion planning planners to get high-quality solutions in
high-dimensional complex problems. In this paper, we
propose an anytime asymptotically-optimal
sampling-based algorithm, namely Informed Anytime Fast
Marching Tree (IAFMT*), designed for solving motion
planning problems. Employing a hybrid incremental search
and a dynamic optimal search, the IAFMT* fast finds a
feasible solution, if time permits, it can efficiently improve
the solution toward the optimal solution. This paper also
presents the theoretical analysis of probabilistic
completeness, asymptotic optimality, and computational
complexity on the proposed algorithm. Its ability to
converge to a high-quality solution with the efficiency,
stability, and self-adaptability has been tested by
challenging simulations and a humanoid mobile robot.

Index Terms—Asymptotic optimality, fast marching tree,
informed anytime algorithm, motion planning

I. INTRODUCTION
OTION planning is such a fundamental research topic in
robotics that it is widely applied to industrial robots,

medical robots, bionic robots, and smart vehicles [1]-[6]. Hence,
motion planning methods are still of high scientific interest,
particularly for high-dimensional complex motion planning
problems. Motion planning aims to search collision-free paths
guiding robots from an initial node to a goal region in a
configuration-space (C-space) full of obstacles [7], [8].
Arguably, sampling-based methods, such as Rapidly-exploring
Random Trees (RRT) [9], Probabilistic Roadmaps (PRM) [10],
and their variants [11]-[13], are among the most popular and
widespread methods available in practical applications. There
are natural advantages for sampling-based methods to solve
high-dimensional problems as they avoid the explicit

This work was supported by the National Natural Science Foundation
of China (51805078, 51374063), the National Key Research and
Development Program of China (2017YFB0304200). (Corresponding
authors: Yunhui Yan; Kechen Song)

J. Xu, K. Song, D. Zhang, H. Dong, and Y. Yan are with the School of
Mechanical Engineering and Automation, Northeastern University,
Shenyang, Liaoning, 110819, China, and the Key Laboratory of
Vibration and Control of Aero-Propulsion Systems Ministry of Education
of China, Northeastern University, Shenyang, 110819, China. (e-mail:
jing_xu@yeah.net, songkc@me.neu.edu.cn, zdf1985681480@163.com,
donghongwenliran@163.com, yanyh@mail.neu.edu.cn).

Q. Meng is with the department of computer science, Loughborough
University, Loughborough LE11 3TU, U.K. (e-mail:
q.meng@lboro.ac.uk).

construction of the C-space by randomly sampling [14], [15].
Efforts to find high-quality solutions, which quality can be

measured according to length, clearance, smoothness, and
energy, lead to asymptotically-optimal (AO) methods. A
high-quality solution is a path whose cost is lower than the
given cost threshold or close to the cost of the optimal solution.
The optimal solution is the path with the lowest cost in a
C-space. Methods with asymptotic optimality, such as RRT*
and PRM* [16], are able to asymptotically converge to the
optimal solution as the number of samples goes to infinity.
Whether the optimal solution can be converged is usually
concerned in theory, while in practical applications we focus on
obtaining high-quality solutions, not the optimal solution,
because it is difficult for motion planning methods to converge
to the optimal solution in limited runtime and computational

Informed Anytime Fast Marching Tree for
Asymptotically-Optimal Motion Planning

Jing Xu, Kechen Song, Defu Zhang, Hongwen Dong, Yunhui Yan,
and Qinggang Meng, Senior Member, IEEE

M

 (a) (b)

 (c) (d)

 (e) (f)
Fig. 1. Solutions of motion planning provided by FMT*. Let 𝑛𝑛 denote
the number of samples and 𝐽𝐽 is path cost in C-space. (a) Failed
planning: 𝑛𝑛 = 1000, 𝐽𝐽 = ∞. (b) A feasible path: 𝑛𝑛 = 3000, 𝐽𝐽 = 1783. (c)
A high-quality path: 𝑛𝑛 = 15000, 𝐽𝐽 = 1616. (d) Change the goal node in
the 2D environment: 𝑛𝑛 = 500, 𝐽𝐽 = 1698. (e) A high-quality path: 𝑛𝑛 =
15000, 𝐽𝐽 = 1295. (f) Change the goal node in the 3D environment: 𝑛𝑛 =
5000, 𝐽𝐽 = 687.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

resources.

For high-dimensional complex problems, sampling-based
AO methods may not consider the efficiency and stability to
achieve high-quality solutions [17], [18]. The informed
sampling technique is introduced to AO methods, such as
Informed RRT* [19] and Batch Informed Trees (BIT*) [20], to
reduce computational burden by defining the sampling region
as a hyper-ellipsoid for finding a high-quality solution. Fast
Marching Trees (FMT*) [21] performs a “lazy” dynamic
programming recursion on a batch of random samples to
generate a low-cost tree as its roadmap. It is capable of solving
high-dimensional complex problems efficiently, especially in
scenarios where collision-checking is expensive, if the number
of samples is reasonable. However, when the number of
samples is small, FMT* is difficult to obtain high-quality
solutions, sometimes it even fails to converge, as shown in Fig.
1(a) and (b). FMT* will lose the advantage of computational
efficiency if the number of samples is large, as presented in Fig.
1(c).

For different problems, it is hard for motion planning
methods without self-adaptability to fast converge to
high-quality solutions, which means that the reasonable
parameter values of a method may be completely different
when solving simple problems and complex problems
respectively. In short, methods with self-adaptability can
automatically tune parameters as requirements change. For
example, the performance of FMT* and its variants [22], [23]
heavily depends on the number of samples, which leads to lack
of self-adaptability for the methods. The reasonable number of
samples may be several thousand in 2D environments, while
that could be tens of thousands in 3D environments, as shown
in Fig. 1(e), even in the same environment, the different number
of samples are needed to solve problems with different levels of
difficulty, as shown in Fig. 1(d) and (f). It is not easy to
determine the reasonable number of samples for an unfamiliar
problem. Some AO methods have anytime performance
leading to self-adaptability, named anytime AO methods, such
as RRT*, PRM*, and their variants [24]-[26]. Anytime
methods provide any solution as quickly as possible and yield
higher-quality solutions if time permits [27], [28]. Anytime AO
methods fast search for an initial solution and asymptotically
improve the solution toward the optimal solution. Motion
Planning using Lower Bounds (MPLB) [29] is a quasi-anytime
algorithm by solving a series of independent problems and
better solutions are only returned after a sub-problem is solved.

This paper presents an anytime AO algorithm, namely
Informed Anytime Fast Marching Tree (IAFMT*). IAFMT*
extends FMT* to an anytime algorithm by designing a hybrid
incremental search and a dynamic optimal search, in addition,
the informed sampling technique is employed to refine
efficiency. The hybrid incremental search integrates the batch
sampling search, like FMT*, and the single sampling search,
like RRT*, to build a low-cost spanning tree, which balances
the efficiency of the batch sampling search and the flexibility of
the single sampling search. As we know the “non-lazy” search
tends to find a high-quality solution by taking lots of
computational resources, while the “lazy” search efficiently

obtains a feasible solution. The proposed dynamic optimal
search considers a tradeoff between the “non-lazy” and “lazy”
searches to fast improve a spanning tree and it achieves a
high-quality solution. Additionally, this paper gives the
theoretical analysis on the IAFMT* in depth, such as the
analysis of probabilistic completeness, asymptotic optimality,
and computational complexity. This paper also
comprehensively evaluates the performance of the proposed
algorithm by a series of 2D, 3D simulations, and real-world
experimental tests. The experimental results show that the
proposed algorithm, IAFMT*, has the ability to converge to a
high-quality solution with the efficiency, stability, and
self-adaptability when compared with the state-of-the-art
algorithms, namely PRM*, Informed RRT*, and FMT*.

Our contribution can be summarized that
1) This paper presents an anytime sampling-based AO

algorithm, namely IAFMT*, which is used to solve
high-dimensional complex motion planning problems and
get high-quality solutions.

2) We propose a strategy that balances the benefits of the
batch and single sampling searches, the “non-lazy” and
“lazy” searches, which makes IAFMT* efficient, stable,
and self-adaptive.

3) In order to support the proposed algorithm in theory, we
provide the analysis of probabilistic completeness,
asymptotic optimality, and computational complexity.

4) This paper comprehensively evaluates the performance of
IAFMT* for solving high-dimensional complex problems
by simulations and a humanoid mobile robot.

This paper is organized as follows. In Section II, the problem
is formally defined. Section III introduces the proposed
algorithm, IAFMT*. The theoretical analysis of IAFMT* is
provided in Section IV. Next, Section V presents the results of
the simulation and experiments. Finally, Section VI concludes
this paper and gives future research directions.

II. PROBLEM FORMULATION
Let 𝒳𝒳 ⊆ ℝ𝑑𝑑 and 𝒳𝒳free ⊂ 𝒳𝒳 be a d-dimensional C-space and

the obstacle-free space, respectively. Let 𝑥𝑥init ∈ 𝒳𝒳free denote
the initial node and 𝒳𝒳goal ⊂ 𝒳𝒳free be the set of goal nodes. A
feasible path to the motion planning problem can be denoted by
𝜎𝜎: [0,1] ⟼𝒳𝒳 if 𝜎𝜎(𝜏𝜏) ∈ 𝒳𝒳free , where ∀𝜏𝜏 ∈ [0,1] , which
means that the initial node 𝑥𝑥init connects to any node 𝑥𝑥goal ∈
𝒳𝒳goal through free space. Let Σ be the set of all feasible paths
and 𝐽𝐽(𝜎𝜎) be the path cost according to Euclidean metric in 𝒳𝒳.

The optimal motion planning problem can be described that
given a path cost function 𝐽𝐽: Σ ↦ ℝ ≥ 0, finding the optimal
solution 𝜎𝜎∗ satisfies

𝜎𝜎∗ = arg min𝜎𝜎∈Σ �𝐽𝐽(𝜎𝜎)�
𝜎𝜎(0) = xinit,𝜎𝜎(1) = xgoal,
∀𝜏𝜏 ∈ [0,1],𝜎𝜎(𝜏𝜏) ∈ 𝒳𝒳free

�. (1)

This paper will interchangeably refer to points in 𝒳𝒳 as nodes

or samples.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

III. INFORMED ANYTIME FAST MARCHING TREE

We now present the Informed Anytime Fast Marching Tree
algorithm, namely IAFMT*, described in the pseudo-code from
Algorithm 1 to 5.

A. Algorithm Overview
It is necessary to introduce some notions and functions

before describing IAFMT*. 𝑉𝑉𝑖𝑖 is the set of nodes including
𝑥𝑥init , 𝑥𝑥goal , and batch random samples n generated by
SampleFree(𝑛𝑛). 𝑇𝑇 = (𝑉𝑉,𝐸𝐸) denotes a spanning tree, where 𝑉𝑉
and E are the tree-node and tree-edge sets, respectively. 𝑉𝑉u is
the unvisited node set where the nodes are not added to the
tree. 𝑉𝑉op contains the open nodes that may be expanded on the
tree. 𝑉𝑉c is the closed node set where there are no unvisited nodes
near each tree node. Let Near(𝑉𝑉space, 𝑧𝑧, 𝑟𝑟𝑛𝑛) , i.e., 𝑁𝑁z , be a
function which returns the node set that satisfies

�𝑥𝑥 ∈ 𝑉𝑉space�‖𝑥𝑥 − 𝑧𝑧‖ < 𝑟𝑟𝑛𝑛}, (2)

where 𝑉𝑉space is the set of all nodes in the current C-space, 𝑧𝑧 is
an open node selected for expansion, and 𝑟𝑟𝑛𝑛 denotes the search
radius.. The search radius 𝑟𝑟𝑛𝑛 [21] is

𝑟𝑟𝑛𝑛 = (1 + 𝜂𝜂) ∙ 2 �1
𝑑𝑑
�
1
𝑑𝑑 �

𝜇𝜇�𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�

𝜁𝜁𝑑𝑑
�
1
𝑑𝑑
�log𝑛𝑛

𝑛𝑛
�
1
𝑑𝑑, (3)

where 𝜂𝜂 > 0 is a small constant, 𝜇𝜇(∙) denotes the Lebesgue
measure, and 𝜁𝜁𝑑𝑑 is the volume of the unit ball in the
d-dimensional Euclidean space. Cost𝑇𝑇(𝑥𝑥) returns the shortest
path cost from 𝑥𝑥init to 𝑥𝑥 on the tree, i.e., the lowest-cost value
for 𝑥𝑥.

We establish the IAFMT* algorithm in Algorithm 1. The
IAFMT* algorithm first determines 𝑉𝑉𝑖𝑖 by random uniform
sampling, then it initializes a tree and other parameters by the
function Initialize(𝑉𝑉𝑖𝑖 ,𝑉𝑉u,𝐸𝐸). HybridIncrementalSearch(𝑇𝑇, 𝑧𝑧)
and DynamicOptimalSearch(𝑉𝑉𝑖𝑖−1,𝑇𝑇), which are different from
FMT*, are introduced to search feasible paths and high-quality
paths. HybridIncrementalSearch(𝑇𝑇, 𝑧𝑧) first uses the batch
sampling search to fast expand a low-cost spanning tree and try
to find a feasible path 𝜎𝜎. And if a feasible path 𝜎𝜎 is not found, the
function will perform the single sampling search to
incrementally search for 𝜎𝜎 . DynamicOptimalSearch(𝑉𝑉𝑖𝑖−1,𝑇𝑇)
employs the informed sampling technique to substantially reduce
the search region which exists better paths and it asymptotically
improves the tree 𝑇𝑇 to achieve a high-quality path by integrating
the “non-lazy” and “lazy” searches. The IAFMT* algorithm
returns 𝜎𝜎HQ when the cost of the current feasible path is less than
or equal to the given cost threshold 𝐽𝐽given. 𝜎𝜎HQ is equal to 𝜎𝜎∗
when 𝐽𝐽given ≤ 𝐽𝐽(𝜎𝜎∗) and available time t is enough.

There are three following contributions in IAFMT*: (1)
IAFMT* extends FMT* to an anytime AO algorithm which can
fast find a high-quality path adaptively in a given runtime; (2)
The hybrid incremental search introduces the incremental
single sampling search to the “lazy” batch sampling search of
FMT* in order to have the ability to quickly get feasible paths

as facing different motion planning problems; (3) The dynamic
optimal search considers a tradeoff between the “non-lazy” and
“lazy” searches to anytime asymptotically improve a spanning
tree, which provides low-cost feasible paths and a high-quality
path, even the optimal solution if conditions permit.

B. Hybrid Incremental Search
The hybrid incremental search aims to find an initial path

efficiently and flexibly by integrating the batch sampling
search and the single sampling search, as shown in Fig. 2(a)-(c).
In Algorithm 2, based on the batch random samples n in
Algorithm 1, the function ExpandTree(𝑧𝑧) efficiently builds a
spanning tree, where 𝑧𝑧 consistently denotes the open node
selected for expansion. Path�𝑥𝑥goal,𝑇𝑇� returns the lowest-cost
feasible path from 𝑥𝑥init to 𝑥𝑥goal on the tree. However, the batch
sampling search ExpandTree(𝑧𝑧) cannot always obtain a path.
The single sampling search InsertNode(𝑇𝑇) flexibly connects
one new node to the tree in order to assist the ExpandTree(𝑧𝑧)
in finding an initial path.

Algorithm 1 IAFMT*
Require: Query (𝑥𝑥init, 𝑥𝑥goal), Search radius 𝑟𝑟𝑛𝑛, Sample count 𝑛𝑛0,
 Available time t , Given cost threshold 𝐽𝐽given
1 𝑉𝑉0 ← {𝑥𝑥init}, 𝑛𝑛 ← 𝑛𝑛0, 𝑖𝑖 ← 1
2 while t do
3 if 𝜎𝜎 = ∅ ∩ 𝜎𝜎HQ = ∅ then
4 𝑉𝑉𝑖𝑖 ← 𝑉𝑉𝑖𝑖−1 ∪ SampleFree(𝑛𝑛); 𝑉𝑉u ← 𝑉𝑉𝑖𝑖\𝑉𝑉0; 𝐸𝐸 ← ∅
5 {𝑉𝑉op,𝑉𝑉c,𝑇𝑇, 𝑧𝑧,𝑁𝑁z} ← Initialize(𝑉𝑉𝑖𝑖 ,𝑉𝑉u,𝐸𝐸)
6 {𝜎𝜎 ,𝑇𝑇} ← HybridIncrementalSearch(𝑇𝑇, 𝑧𝑧);
7 if 𝜎𝜎 ≠ ∅ ∩ 𝜎𝜎HQ = ∅ then
8 𝜎𝜎 ← DynamicOptimalSearch(𝑉𝑉𝑖𝑖−1,𝑇𝑇); 𝑖𝑖 ← 𝑖𝑖 + 1
9 if Cost𝑇𝑇�𝑥𝑥goal� ≤ 𝐽𝐽given then
10 return 𝜎𝜎HQ ← 𝜎𝜎
11 return 𝜎𝜎

 (a) (b)

 (c) (d)

 (e) (f)
Fig. 2. Search process of IAFMT*. The hybrid incremental search is
presented in (a)-(c). The dynamic optimal search is shown in (d)-(f). (a)
IAFMT* builds a search tree not reaching the goal node. (b) A new node
is inserted to help the tree grow. (c) A feasible path is found. (d) IAFMT*
prunes the tree and performs the informed sampling. (e) The tree is
improved dynamically. (f) A high-quality path is got finally.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

The ExpandTree(𝑧𝑧), as shown in Algorithm 3, is introduced
from FMT* [21] except for RewireConnection(𝑥𝑥,𝑌𝑌near) used
in the dynamic optimal search in Algorithm 5. The lowest-cost
open node 𝑧𝑧 is selected to search for its neighbor unvisited node
set 𝑋𝑋near. For each 𝑥𝑥 ∈ 𝑋𝑋near, its neighbor open node set 𝑌𝑌near
is got to determine the lowest-cost node 𝑦𝑦min. If the connection
between 𝑦𝑦min and 𝑥𝑥 is valid, the 𝑥𝑥 with 𝑦𝑦min as its parent is
sent to the set 𝑉𝑉op′ which will be added to the tree 𝑇𝑇 and 𝑉𝑉op
once all 𝑥𝑥 samples in 𝑋𝑋near have been considered. It is
noteworthy that the 𝑥𝑥 samples in 𝑉𝑉op′ , not in 𝑉𝑉op, will not be
connected to the remaining samples in 𝑋𝑋near. Thereafter, the
node 𝑧𝑧 is removed from the open set 𝑉𝑉op and added to the
closed set 𝑉𝑉c. RewireConnection(𝑥𝑥,𝑌𝑌near) is able to improve
the spanning tree if a path 𝜎𝜎 exists, we will explain it later. The
batch sampling search returns Failure when 𝑉𝑉op and 𝜎𝜎 are
empty.

The InsertNode(𝑇𝑇) shown in Algorithm 4 determines a new
node 𝑠𝑠 from 𝒳𝒳free and activates the neighbor closed nodes
𝑊𝑊near. The new node is added to the existing tree in an optimal
way. In addition, the new node can be regarded as a bridge
between the closed nodes and the unvisited nodes to help the
ExpandTree(𝑧𝑧) expand the tree again.

C. Dynamic Optimal Search
The proposed dynamic optimal search, balancing the

features of the “lazy” and “non-lazy” searches, asymptotically
improves the existing tree to find a better path until the optimal
path is obtained, as shown in Fig. 2(d)-(f). We briefly list new
functions and notions in Algorithm 5.
Let Prune(𝑉𝑉𝑖𝑖−1, Cost𝑇𝑇�𝑥𝑥goal�) be the function that prunes the
nodes and edges in 𝑉𝑉𝑖𝑖−1 by the informed technique determining
a hyper-elliptic region in C-space, where 𝑉𝑉𝑖𝑖−1 only contains
closed nodes and unvisited nodes. Better paths may exist in the
hyper-elliptic region that satisfies

‖𝑥𝑥 − 𝑥𝑥init‖ + �𝑥𝑥 − 𝑥𝑥goal� ≤ 𝐽𝐽(𝜎𝜎𝑖𝑖−1). (4)

Costig(𝑣𝑣) denotes the sum of the lowest cost from 𝑥𝑥init to v and
from v to 𝑥𝑥goal , ignoring obstacles. The function
InformedSampleFree(𝑛𝑛, Cost𝑇𝑇�𝑥𝑥goal�) samples 𝑛𝑛 nodes in
the hyper-elliptic region and the nodes not on the tree in 𝑉𝑉𝑖𝑖 are
added to 𝑉𝑉u by UnconnectNodes(𝑉𝑉𝑖𝑖).

Algorithm 5 shows the dynamic optimal search for IAFMT*.
Prune(𝑉𝑉𝑖𝑖−1, Cost𝑇𝑇�𝑥𝑥goal�) deletes the nodes and edges outside
the hyper-elliptic sub-region given by the informed technique
and InformedSampleFree(𝑛𝑛, Cost𝑇𝑇�𝑥𝑥goal�) provides 𝑛𝑛 new
nodes in the sub-region. 𝑉𝑉u includes the new nodes in the i’th
iteration and the unvisited nodes in the (i-1)’th iteration after
executing UnconnectSamples(𝑉𝑉𝑖𝑖) . It is noted that all the
closed nodes in 𝑉𝑉𝑖𝑖 are reopened when the dynamic optimal
search is initialized. The dynamic optimal search
asymptotically improves the tree and tries to find a lower-cost
path at any time. The function RewireConnection(𝑥𝑥,𝑌𝑌near) in
Algorithm 3 makes the ExpandTree(𝑧𝑧) can improve the
searching tree. The ExpandTree(𝑧𝑧) employs the “lazy” search,
a neighbor unvisited node 𝑥𝑥 is simply skipped if a connection
between the 𝑥𝑥 and its neighbor open node intersects an obstacle,
to connect the nodes in 𝑉𝑉u to the tree (Alg. 3, line 2-8) as the
dynamic optimal search is executed. Thereafter, the “non-lazy”
search is conducted by the RewireConnection(𝑥𝑥,𝑌𝑌near) to
rewire every neighbor open node ℎ , which connects the
lowest-cost node as its parent node.

Algorithm 2 HybridIncrementalSearch(𝑇𝑇, 𝑧𝑧)
1 while 𝑧𝑧 ≠ 𝑥𝑥goal do
2 {𝑧𝑧,𝑇𝑇} ← ExpandTree(𝑧𝑧); 𝜎𝜎 ← Path�𝑥𝑥goal,𝑇𝑇�
3 if 𝜎𝜎 ≠ ∅ then break
4 if 𝜎𝜎 = ∅ ∩ 𝑉𝑉op = ∅ then 𝑇𝑇 ← InsertNode(𝑇𝑇)
5 return {𝜎𝜎,𝑇𝑇}

Algorithm 3 ExpandTree(𝑧𝑧)
1 𝑉𝑉op′ ← ∅; 𝑋𝑋near ← 𝑁𝑁𝑧𝑧 ∩ 𝑉𝑉u
2 for 𝑥𝑥 ∈ 𝑋𝑋near do
3 𝑁𝑁𝑥𝑥 ← Near(𝑉𝑉\{𝑥𝑥}, 𝑥𝑥, 𝑟𝑟𝑛𝑛); 𝑌𝑌near ← 𝑁𝑁𝑥𝑥 ∩ 𝑉𝑉op
4 𝑦𝑦min ← arg min𝑦𝑦 ∈ 𝑌𝑌near {Cost𝑇𝑇(𝑦𝑦) + Cost(𝑦𝑦, 𝑥𝑥)}
5 if CollisionFree(𝑦𝑦min, 𝑥𝑥) then
6 𝑇𝑇. parent(𝑥𝑥) ← 𝑦𝑦min
7 𝑉𝑉op′ ← 𝑉𝑉op′ ∪ {𝑥𝑥}; 𝑉𝑉u ← 𝑉𝑉u\{𝑥𝑥}
8 𝑉𝑉op ← �𝑉𝑉op ∪ 𝑉𝑉op′ �\{𝑧𝑧}; 𝑉𝑉c ← 𝑉𝑉c ∪ {𝑧𝑧}
9 if 𝜎𝜎 ≠ ∅ then 𝑇𝑇 ← RewireConnection(𝑥𝑥,𝑌𝑌near)
10 if 𝑉𝑉op = ∅ ∩ 𝜎𝜎 = ∅ then return Failure
11 𝑧𝑧 ← arg min𝑦𝑦 ∈ 𝑉𝑉op {Cost𝑇𝑇(𝑦𝑦)}
12 return {𝑧𝑧,𝑇𝑇}
1 function RewireConnection(𝑥𝑥,𝑌𝑌near)
2 𝐻𝐻near ← ∅
3 for 𝑦𝑦 ∈ 𝑌𝑌near do
4 if 𝑇𝑇. parent(𝑦𝑦) ≠ 𝑇𝑇. parent(𝑥𝑥) then
5 𝐻𝐻near ← 𝐻𝐻near ∪ {𝑦𝑦}
6 for ℎ ∈ 𝐻𝐻near do
7 if Cost𝑇𝑇(𝑥𝑥) + Cost(𝑥𝑥, ℎ) < Cost𝑇𝑇(ℎ) then
8 if CollisionFree(𝑥𝑥,ℎ) then
9 𝑇𝑇. parent(ℎ) ← 𝑥𝑥; UpdateChildCosts(ℎ)
10 return 𝑇𝑇

Algorithm 4 InsertNode(𝑇𝑇)
1 𝑠𝑠 ← SampleFree(1); 𝑊𝑊near ← Near(𝑉𝑉𝑖𝑖 , 𝑠𝑠, 𝑟𝑟𝑛𝑛) ∩ 𝑉𝑉c
2 while 𝑊𝑊near ≠ ∅ do
3 𝑥𝑥min ← arg min𝑥𝑥 ∈ 𝑊𝑊near {Cost𝑇𝑇(𝑥𝑥) + Cost(𝑥𝑥, 𝑠𝑠)}
4 if CollisionFree(𝑥𝑥min, 𝑠𝑠) then
5 𝑇𝑇. parent(𝑠𝑠) ← 𝑥𝑥min
6 𝑉𝑉op ← 𝑉𝑉op ∪ {𝑥𝑥min}; 𝑧𝑧 ← 𝑥𝑥min
7 break
8 else then 𝑊𝑊near ← 𝑊𝑊near\{𝑥𝑥min}
9 return 𝑇𝑇

Algorithm 5 DynamicOptimalSearch(𝑉𝑉𝑖𝑖−1,𝑇𝑇)
1 𝑉𝑉p ← Prune(𝑉𝑉𝑖𝑖−1, Cost𝑇𝑇�𝑥𝑥goal�); 𝑛𝑛 ← 1

2
× Size(𝑉𝑉p)

2 𝑉𝑉𝑖𝑖 ← 𝑉𝑉p ∪ InformedSampleFree(𝑛𝑛, Cost𝑇𝑇�𝑥𝑥goal�)
3 𝑉𝑉u ← UnconnectSamples(𝑉𝑉𝑖𝑖)
4 {𝑉𝑉op,𝑉𝑉c,𝑇𝑇, 𝑧𝑧,𝑁𝑁𝑧𝑧} ← Initialize(𝑉𝑉𝑖𝑖 ,𝑉𝑉u,𝐸𝐸)
5 while 𝑉𝑉op ≠ ∅ do
6 {𝑧𝑧,𝑇𝑇} ← ExpandTree(𝑧𝑧); 𝜎𝜎 ← Path�xgoal,𝑇𝑇�
7 return 𝜎𝜎
1 function Prune(𝑉𝑉𝑖𝑖−1, Cost𝑇𝑇�xgoal�)
2 𝑉𝑉p ← ∅
3 for 𝑣𝑣 ∈ 𝑉𝑉𝑖𝑖−1 do
4 if Costig(𝑣𝑣) ≤ Cost𝑇𝑇�𝑥𝑥goal� then 𝑉𝑉p ← 𝑉𝑉p ∪ {𝑣𝑣}
5 return 𝑉𝑉p

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

IV. ANALYSIS

A. Probabilistic Completeness
The proposed algorithm IAFMT* ensures probabilistic

completeness which means that the probability of solving a
problem goes to 1 as the number of samples approaches infinity.

Theorem 1. IAFMT* is a probabilistically complete
algorithm. For a given motion planning problem, the
probability of searching for a feasible path is as follows.

lim
𝑛𝑛→∞

P��𝑥𝑥goal ∈ 𝑉𝑉𝑖𝑖 ∩ 𝒳𝒳goal in 𝑇𝑇�� = 1 (5)

Proof. The following three arguments are used to prove the

theorem 1: (1) A batch of nodes including 𝑥𝑥init and 𝑥𝑥goal are
randomly sampled from 𝒳𝒳free; (2) The batch sampling search
starts to build a searching tree from 𝑥𝑥init and expands the tree
with the lowest-cost node in 𝑇𝑇 as the selected node 𝑧𝑧; (3) The
single sampling search helps the batch sampling search explore
the area where the distance from any node to the tree nodes is
longer than 𝑟𝑟𝑛𝑛 . Therefore, IAFMT* performs the hybrid
incremental search to steadily grow a searching tree outward
from 𝑥𝑥init. The probability of finding a feasible path approaches
to one as the number of samples 𝑛𝑛 goes to infinity. So it is stated
that IAFMT* can guarantee probability completeness.

B. Asymptotic Optimality
Let 𝜎𝜎𝒯𝒯: [0,1] ⟼𝒳𝒳 be a tracing path that traces the path 𝜎𝜎.

The cost of 𝜎𝜎𝒯𝒯 is bounded as

𝐽𝐽(𝜎𝜎𝒯𝒯) ≤ (1 + ε)𝐽𝐽(𝜎𝜎), (6)

when 𝜎𝜎𝒯𝒯 approaches 𝜎𝜎, where ε is a given small constant.
Theorem 2. IAFMT* is an AO algorithm. For an optimal

motion planning problem as defined in Section II, IAFMT*
makes a feasible path 𝜎𝜎 converge in probability to the optimal
path 𝜎𝜎∗ as 𝑛𝑛 → ∞. Specifically, for any ε > 0,

lim
𝑛𝑛→∞

P[𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε)𝐽𝐽(𝜎𝜎∗)] = 0 (7)

Proof. The proof is based on [21] that probability is bounded

as 𝑂𝑂(𝑛𝑛−
𝜂𝜂
𝑑𝑑 log−

1
𝑑𝑑 𝑛𝑛) if 𝜎𝜎𝒯𝒯 cannot approach 𝜎𝜎 as 𝑛𝑛 → ∞. Finding

a tracing path 𝜎𝜎𝒯𝒯′ by IAFMT* approximates 𝜎𝜎∗ with

 𝐽𝐽�𝜎𝜎𝒯𝒯′� > (1 + ε/3)𝐽𝐽(𝜎𝜎∗). (8)

Obviously, for any ε > 0, we can obtain the inequality

 (1 + ε/3)𝐽𝐽�𝜎𝜎𝒯𝒯′� > (1 + ε/3)2𝐽𝐽(𝜎𝜎∗). (9)

As 𝑛𝑛 is large enough, a tracing path 𝜎𝜎𝒯𝒯 approaching 𝜎𝜎𝒯𝒯′ can
be found and deduce the following inequality

P[𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)2𝐽𝐽(𝜎𝜎∗)] <
 P�𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)𝐽𝐽�𝜎𝜎𝒯𝒯′��, (10)

where

 P�𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)𝐽𝐽�𝜎𝜎𝒯𝒯′�� = 𝑂𝑂(𝑛𝑛−
𝜂𝜂
𝑑𝑑 log−

1
𝑑𝑑 𝑛𝑛) (11)

by [21]. Let 𝜎𝜎𝒯𝒯 returned by IAFMT* approximate 𝜎𝜎∗, for any
𝜂𝜂 ≥ 0,

lim
𝑛𝑛→∞

P[𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)2𝐽𝐽(𝜎𝜎∗)] <

lim
n→∞

O �𝑛𝑛−
𝜂𝜂
𝑑𝑑 log−

1
𝑑𝑑 𝑛𝑛� = 0. (12)

If ε ≤ 3, the inequality can be obtained

 (1 + ε/3)2 ≤ (1 + ε), (13)

which follows that

{𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε)𝐽𝐽(𝜎𝜎∗)} ⊂

{𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε/3)2𝐽𝐽(𝜎𝜎∗)}. (14)

Hence,

lim
𝑛𝑛→∞

P[𝐽𝐽(𝜎𝜎𝒯𝒯) > (1 + ε)𝐽𝐽(𝜎𝜎∗)] ≤
lim
n→∞

P[J(σ𝒯𝒯) > (1 + ε/3)2J(σ∗)] = 0. (15)

If ε > 3, the above statement still holds due to the probability is
monotone-decreasing about ε. Therefore, IAFMT* is an AO
algorithm, as claimed.

C. Computational Complexity
The space complexity SC𝑛𝑛IAFMT∗ as the amount of memory

space occupied by IAFMT* in iteration n. The time complexity
TC𝑛𝑛IAFMT∗ is defined as the number of calls to the most
time-consuming IAFMT* function in iteration n.

Theorem 3. SC𝑛𝑛IAFMT∗ ∈ 𝑂𝑂(𝑛𝑛 log𝑛𝑛).
Proof. 𝑉𝑉𝑖𝑖 , 𝑉𝑉u , 𝑉𝑉op , 𝑉𝑉c , 𝑉𝑉p , 𝐸𝐸 and 𝑇𝑇 require 𝑂𝑂(𝑛𝑛) space,

respectively. 𝑁𝑁𝑥𝑥 , 𝑁𝑁𝑧𝑧 , 𝑋𝑋near , 𝑌𝑌near , 𝐻𝐻near and 𝑊𝑊near require
𝑂𝑂(log𝑛𝑛) space for one node, respectively. 𝑂𝑂(𝑛𝑛 log𝑛𝑛) space
will be occupied to save these variables for up to n nodes.
Therefore, SC𝑛𝑛IAFMT∗ ∈ 𝑂𝑂(𝑛𝑛 log𝑛𝑛).

Theorem 4. TC𝑛𝑛IAFMT∗ ∈ 𝑂𝑂(𝑛𝑛 log𝑛𝑛).
Proof. Lines 2-8 are run 𝑂𝑂(log𝑛𝑛) times [21] in Algorithm 3

and RewireConnection(∙) takes 𝑂𝑂(log𝑛𝑛) time for one node,
so executing ExpandTree(∙) once takes 𝑂𝑂(log𝑛𝑛) time.
Similarly, InsertNode(∙) takes 𝑂𝑂(log𝑛𝑛) time. 𝑂𝑂(log𝑛𝑛) time
is required to run HybridIncrementalSearch(∙) and
DynamicOptimalSearch(∙) once, respectively. Hence,
IAFMT* takes 𝑂𝑂(𝑛𝑛 log𝑛𝑛) time for 𝑛𝑛 nodes.

V. EXPERIMENTS

A. Experiments in OMPL Benchmark
1) Simulation Setup

We provide numerical experiments to evaluate the

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

performance of IAFMT* by comparing it with three
state-of-the-art algorithms, namely PRM*, Informed RRT*,
and FMT*. All algorithms are run on a 3.7GHz Intel Core
i7-8700K CPU with 16GB of memory and tested in the Open
Motion Planning Library (OMPL) [30] v1.4.0 benchmark. Four
OMPL test scenarios are considered: two 2D scenarios, “Bug
Trap” and “Maze”, in the 𝕊𝕊𝕊𝕊(2) C-space as well as two 3D
scenarios, “Cubicles” and “Apartment”, in the 𝕊𝕊𝕊𝕊(3) C-space,
as illustrated in Fig. 3. Setting runtime 𝑡𝑡given and cost threshold
𝐽𝐽given in each scenario, as shown in Table I, can assess the
ability of converging to a high-quality solution in limited
resources by test algorithms. The default OMPL settings are
employed for PRM* and Informed RRT*. We use the default
value 𝑟𝑟𝑛𝑛 = 1.1 for FMT* and IAFMT*. 𝑛𝑛 = 1000 is given as
the initial number of samples for IAFMT* in all scenarios.

In order to compare the non-anytime AO algorithm FMT*
with the other three anytime AO algorithms, we vary the given
number of samples for FMT* in different scenarios. Sample
counts are varied from 1000 to 10000 points in “Bug Trap” and
“Maze”, from 1000 to 50000 points in “Cubicles”, from 1000 to
80000 points in “Apartment”. FMT* runs 20 times at every
sample counts. Other anytime AO algorithms run 50 times in
each scenario.
2) Results and Discussion

The simulation results are shown in Table II, where 𝑡𝑡avg is
the average runtime, 𝐽𝐽avg is the average path cost, and I-RRT*
denotes Informed RRT*. In terms of computational efficiency,
i.e., 𝑡𝑡avg, the performance of FMT* and IAFMT* substantially
outperform PRM* and Informed RRT*, and that of IAFMT* is
slightly better than FMT* in general. All algorithms can give
planning paths with lower 𝐽𝐽avg than 𝐽𝐽given in each scenario
except 𝐽𝐽avg of PRM* is 1914.18 in “Cubicles” scenario, which
means that PRM* cannot find low-cost paths. Let Sol in Table
II be the success rate of obtaining the feasible path by the
algorithms. And Opt is the success rate of getting the
high-quality path satisfying the given cost threshold 𝐽𝐽given by
the algorithms. The success rate of obtaining the feasible path
and high-quality path by IAFMT* is obviously higher than the
other algorithms in all scenarios. In the most challenging
“Apartment” scenario, the success rate of obtaining the
high-quality path by IAFMT* is 64%, 70%, and 20.9% higher
than PRM*, Informed RRT*, and FMT*, respectively, which
demonstrates the advantages of IAFMT* in the capability of
solving a high-quality solution. IAFMT* also shows the
self-adaptive ability due to the success rates of achieving the
feasible path and the high-quality path are 100% in all
scenarios.

Fig. 4 and Fig. 5 use the box plots to visually show the
statistical information for computation time and path cost given
by each algorithm, where the red dashed lines denote 𝐽𝐽given and
the small circles are data outliers. As presented in Fig. 4, data
points of path cost generated by IAFMT* are all under the line
of 𝐽𝐽given, and the points are closer to the given line except in
“Maze” scenario due to the low-cost paths are easy to be found

TABLE I
RUNTIME AND COST THRESHOLD

Scenario 𝑡𝑡given(s) 𝐽𝐽given
Bug Trap 10 130
Maze 10 130
Cubicles 100 1800
Apartment 300 500

 (a) Bug Trap (b) Maze

 (c) Cubicles (d) Apartment
Fig. 3. The planning paths generated by IAFMT* in OMPL test
scenarios.

TABLE II
SIMULATION RESULTS FOR ALL ALGORITHMS

Scenario Algorithm 𝑡𝑡avg(s) 𝐽𝐽avg Sol (%) Opt (%)

Bug Trap

PRM* 4.53 129.21 98.0 98.0
I-RRT* 1.40 129.29 100.0 100.0
FMT* 0.55 127.38 90.0 79.5
IAFMT* 0.41 128.91 100.0 100.0

Maze

PRM* 3.01 123.84 100.0 90.0
I-RRT* 3.70 123.25 100.0 98.0
FMT* 1.09 111.19 100.0 95.0
IAFMT* 0.99 115.71 100.0 100.0

Cubicles

PRM* 100.11 1914.18 100.0 0.0
I-RRT* 50.01 1796.74 100.0 98.0
FMT* 12.13 1794.43 99.6 72.3
IAFMT* 15.86 1795.66 100.0 100.0

Apartment

PRM* 199.86 497.86 60.0 36.0
I-RRT* 150.80 419.97 30.0 30.0
FMT* 59.78 449.10 87.5 79.1
IAFMT* 43.69 471.78 100 100

 (a) Bug Trap (b) Maze

 (c) Cubicles (d) Apartment
Fig. 4. The path cost given by each algorithm.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

by IAFMT. Hence, IAFMT* can save lots of computational
resources while guaranteeing high-quality solutions. In
addition, the data points of path cost by IAFMT* is denser in
general, which indicates that the performance of obtaining
high-quality paths is more stable than the other algorithms. The
same features of data points are also shown in Fig. 5. The lower
and denser data points of computation time given by IAFMT*
show that IAFMT* has the capability to converge to a
high-quality solution rapidly and stably.

B. Experiments on Robot Planning Tasks
1) Experiment Setup

A simulation and a pick-and-place experiment on
NEU-Robot equipped with 6-DOF manipulators, as shown in
Fig. 6, are carried out to evaluate the performance of IAFMT*
in application. We also use the four algorithms, run on a
2.3GHz Intel Core i7-3610QE CPU with 8GB of memory, to
plan the trajectory of the manipulators. For the end effectors of
the manipulators, position precision and orientation precision
are 0.01 meters and 0.1 radians. It is the same as before for the
parameters of PRM* and Informed RRT*. The search radius 𝑟𝑟𝑛𝑛
is also 1.1 for FMT* and IAFMT*. Each algorithm runs 10
times to plan the trajectory for the manipulators. We do not set

the cost threshold 𝐽𝐽given in all experiments so as to test the
ability of the algorithms to explore the high-quality trajectory.

In the simulation of the right manipulator, as shown in Fig.
7(a), the given runtime 𝑡𝑡given is 5 seconds and 50 randomized
boxes are added to the environment as fixed obstacles. We give
variable sample counts of FMT* from the order of 1000 to 5500
points and set initial sample counts of IAFMT* to 1000 points.
In addition, initial sample count 𝑛𝑛 is set from 1000 to 5000 in
order to investigate the influence of variable 𝑛𝑛 on the
performance of IAFMT*. The pick-and-place process of the
left manipulator consists of four phases, as shown from (b) to (e)
in Fig. 7. The given runtime is set to 5 seconds in the pick and
reset phases, it is 1 second in the hold and place phases, and the
total planning time is limited in 12 seconds. The sample counts
for FMT* are given from 1000 to 10000 points and the initial
sample counts for IAFMT* are always 1000 points.

2) Results and Discussion
The algorithms only need to plan one trajectory in the

randomized simulated clutter scene, while they try to plan four
different trajectories in succession in the real world, which
means that the motion planning is failed if one of the four
trajectories fails to plan. Experiment results in Table III show
that the planning success rate of Informed RRT* is reduced by
40% with the increase of problem difficulty, and IAFMT*
performs well in all experiments due to its self-adaptive ability.
Besides, the low computational load of IAFMT* leads to high
convergence rate even on the low-end computer. It is noted that
FMT* shows good performance similar to IAFMT*, but FMT*
is not a self-adaptive algorithm as the parameter, i.e., the
sample count, is tuned manually according to experience.

 (a) Bug Trap (b) Maze

 (c) Cubicles (d) Apartment
Fig. 5. The computation time consumed by each algorithm.

Fig. 6. NEU-Robot.

 (a) Simulation (b) Pick

 (c) Hold (d) Place (e) Reset
Fig. 7. NEU-Robot motion planning realized by IAFMT*.

TABLE III
EXPERIMENT RESULTS FOR ROBOT MOTION PLANNING

Experiment Success rate
PRM* I-RRT* FMT* IAFMT*

Simulation 8/10 6/10 8/10 8/10
Pick-and-place 6/10 2/10 8/10 9/10

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

The ability of algorithms to explore the high-quality
trajectory is presented in Fig. 8(a) and (b). The visual statistical
information for path cost shows that the average and median
values given by IAFMT* are the smallest than the other
algorithms and its data points are denser, which indicates that
IAFMT* can stably plan the high-quality trajectories. Fig. 9
presents the performance of every algorithm in each phase of
the pick-and-place experiment. All algorithms plan a similar
trajectory in the hold and place phases, while IAFMT*
performs well in the pick and reset phases due to its outstanding
motion planning ability.

Furthermore, we change the parameter of IAFMT* in the
simulation to investigate the influence of variable initial sample
counts on the performance. The success rate of the motion
planning, solved by IAFMT* with initial sample count 𝑛𝑛 =
1000, is 80% and the planning success rate is 100% as 𝑛𝑛 is
from 2000 to 5000. As shown in Fig. 10, when 𝑛𝑛 is set to 1000,
IAFMT* can fast search for an initial path with the high cost
and it iteratively improves the solution to yield a final path with
the low cost until the computational time reaches the given
runtime. With the increase of the initial sample counts, there are
denser initial samples in the C-space, which leads to the

increase in time of getting an initial path and the low cost of the
initial path approaching the final-path cost. The experiment
results show that IAFMT* with different initial sample counts
can stably converge to a high-quality solution, which
demonstrates that IAFMT* is highly self-adaptive.

VI. CONCLUSION
In this paper, an anytime asymptotically-optimal

sampling-based algorithm, namely Informed Anytime Fast
Marching Tree, is presented to solve motion planning problems,
especially high-dimensional complex problems. This paper
also gives the theoretical analysis of probabilistic completeness,
asymptotic optimality, and computational complexity on the
proposed algorithm. The challenging simulation and
experimental results verify that the proposed algorithm can
converge to a high-quality solution with an efficient, stable, and
self-adaptive performance.

In the future, we will introduce the GPU-based parallel
computing technique into IAFMT* to achieve real-time motion
planning and it is interesting to evaluate the performance of
IAFMT* without knowledge of the geometry of obstacles and
environments.

REFERENCES
[1] T. Faulwasser, T. Weber, P. Zometa and R. Findeisen, “Implementation

of Nonlinear Model Predictive Path-Following Control for an Industrial
Robot,” IEEE Trans. Contr. Syst. Technol., vol. 25, DOI
10.1109/Tcst.2016.2601624, no. 4, pp. 1505-1511, Jul. 2017.

[2] T. F. Shu, S. Gharaaty, W. F. Xie, A. Joubair and I. A. Bonev, “Dynamic
Path Tracking of Industrial Robots With High Accuracy Using
Photogrammetry Sensor,” IEEE/Asme Trans. Mech., vol. 23, DOI
10.1109/Tmech.2018.2821600, no. 3, pp. 1159-1170, Jun. 2018.

[3] B. Lu, H. K. Chu, K. C. Huang and L. Cheng, “Vision-Based Surgical
Suture Looping Through Trajectory Planning for Wound Suturing,” IEEE
Trans. Autom. Sci. Eng., vol. 16, DOI 10.1109/Tase.2018.2840532, no. 2,
pp. 542-556, Apr. 2019.

[4] N. G. Yu, Y. J. Zhai, Y. H. Yuan and Z. X. Wang, “A Bionic Robot
Navigation Algorithm Based on Cognitive Mechanism of Hippocampus,”
IEEE Trans. Autom. Sci. Eng., vol. 16, DOI 10.1109/Tase.2019.2909638,
no. 4, pp. 1640-1652, Oct. 2019.

[5] H. Yang, J. Qi, Y. C. Miao, H. X. Sun and J. H. Li, “A New Robot
Navigation Algorithm Based on a Double-Layer Ant Algorithm and
Trajectory Optimization,” IEEE Trans. Ind. Electron, vol. 66, DOI
10.1109/Tie.2018.2886798, no. 11, pp. 8557-8566, Nov. 2019.

[6] J. Yuan, S. K. Yang and J. X. Cai, “Consistent Path Planning for
On-Axle-Hitching Multisteering Trailer Systems,” IEEE Trans. Ind.
Electron, vol. 65, DOI 10.1109/Tie.2018.2823691, no. 12, pp. 9625-9634,
Dec. 2018.

[7] H. Cheon and B. K. Kim, “Online Bidirectional Trajectory Planning for
Mobile Robots in State-Time Space,” IEEE Trans. Ind. Electron., vol. 66,
DOI 10.1109/tie.2018.2866039, no. 6, pp. 4555-4565, Jun. 2019.

[8] P. P. Cai, I. Chandrasekaran, J. M. Zheng and Y. Y. Cai, “Automatic Path
Planning for Dual-Crane Lifting in Complex Environments Using a
Prioritized Multiobjective PGA,” IEEE Trans. Ind. Inform., vol. 14, DOI
10.1109/Tii.2017.2715835, no. 3, pp. 829-845, Mar. 2018.

[9] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol, 20. DOI 10.1177/02783640122067453, no. 5, pp.
378-400, May 2001.

[10] L. E. Kavraki, P. Svestka, J. C. Latombe and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Trans. Robot. Autom., vol. 12, DOI
10.1109/70.508439, no. 4, pp. 566-580, Aug. 1996.

[11] J. Suh, J. Gong and S. Oh, “Fast Sampling-Based Cost-Aware Path
Planning With Nonmyopic Extensions Using Cross Entropy,” IEEE
Trans. Robot., vol. 33, DOI 10.1109/Tro.2017.2738664, no. 6, pp.
1313-1326, Dec. 2017.

 (a) (b)
Fig. 8. The experiment results. (a) Path cost in the simulation. (b) Path
cost in the pick-and-place experiment.

Fig. 9. Path cost in each phase.

Fig. 10. The performance of IAFMT* tested by varying initial sample
counts in the simulation.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

[12] B. F. Ye, Q. Tang, J. Yao and W. X. Gao, “Collision-Free Path Planning

and Delivery Sequence Optimization in Noncoplanar Radiation Therapy,”
IEEE Trans. Cyber., vol. 49, DOI 10.1109/Tcyb.2017.2763682, no. 1, pp.
42-55, Jan. 2019.

[13] I. B. Jeong, S. J. Lee and J. H. Kim, “Quick-RRT*: Triangular
inequality-based implementation of RRT* with improved initial solution
and convergence rate,” Expert Syst. Appl., vol. 123, DOI
10.1016/j.eswa.2019.01.032, pp. 82-90, Jun. 2019.

[14] M. Elbanhawi and M. Simic, “Sampling-Based Robot Motion Planning:
A Review,” IEEE Access, vol. 2, DOI 10.1109/Access.2014.2302442, pp.
56-77, Jan. 2014.

[15] Y. Li, R. X. Cui, Z. J. Li and D. M. Xu, “Neural Network Approximation
Based Near-Optimal Motion Planning With Kinodynamic Constraints
Using RRT,” IEEE Trans. Ind. Electron., vol. 65, DOI
10.1109/Tie.2018.2816000, no. 11, pp. 8718-8729, Nov. 2018.

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, DOI
10.1177/0278364911406761, no. 7, pp. 846-894, Jun. 2011.

[17] M. Zucker et al., “CHOMP: Covariant Hamiltonian optimization for
motion planning,” Int. J. Robot. Res., vol. 32, DOI
10.1177/0278364913488805, no. 9-10, pp. 1164-1193, Aug. 2013.

[18] S. Choi, K. Lee and S. Oh, “Gaussian Random Paths for Real-Time
Motion Planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst, DOI
10.1109/IROS.2016.7759237, pp. 1456-1461, Oct. 2016.

[19] J. D. Gammell, T. D. Barfoot and S. S. Srinivasa, “Informed Sampling for
Asymptotically Optimal Path Planning,” IEEE Trans. Robot., vol. 34,
DOI 10.1109/Tro.2018.2830331, no. 4, pp. 966-984, Aug. 2018.

[20] J. D. Gammell, S. S. Srinivasa and T. D. Barfoot, “Batch Informed Trees
(BIT*): Sampling-based Optimal Planning via the Heuristically Guided
Search of Implicit Random Geometric Graphs,” in Proc. IEEE Int. Conf.
Robot. Autom., DOI 10.1109/ICRA.2015.7139620, pp. 3067-3074, Jul.
2015.

[21] L. Janson, E. Schmerling, A. Clark and M. Pavone, “Fast marching tree:
A fast marching sampling-based method for optimal motion planning in
many dimensions,” Int. J. Robot. Res., vol. 34, DOI
10.1177/0278364915577958, no. 7, pp. 883-921, Jun. 2015.

[22] J. A. Starek, J. V. Gomez, E. Schmerling, L. Janson, L. Moreno and M.
Pavone, “An Asymptotically-Optimal Sampling-Based Algorithm for
Bi-directional Motion Planning,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., DOI 10.1109/IROS.2015.7353652, pp. 2072-2078, Dec.
2015.

[23] E. Schmerling, L. Janson and M. Pavone, “Optimal Sampling-Based
Motion Planning under Differential Constraints: the Driftless Case,” in
Proc. IEEE Int. Conf. Robot. Autom., DOI 10.1109/ICRA.2015.7139514,
pp. 2368-2375, Jul. 2015.

[24] Z. Tahir, A. H. Qureshi, Y. Ayaz and R. Nawaz, “Potentially guided
bidirectionalized RRT* for fast optimal path planning in cluttered
environments,” Robot. Auton. Syst., vol. 108, DOI
10.1016/j.robot.2018.06.013, pp. 13-27, Oct. 2018.

[25] B. Sakcak, L. Bascetta, G. Ferretti and M. Prandini, “Sampling-based
optimal kinodynamic planning with motion primitives,” Auton. Robot.,
vol. 43, DOI 10.1007/s10514-019-09830-x, no. 7, pp. 1715-1732, Oct.
2019.

[26] J. D. Marble and K. E. Bekris, “Asymptotically Near-Optimal Planning
With Probabilistic Roadmap Spanners,” IEEE Trans. Robot., vol. 29, DOI
10.1109/Tro.2012.2234312, no. 2, pp. 432-444, Apr. 2013.

[27] O. Salzman and D. Halperin, “Asymptotically Near-Optimal RRT for
Fast, High-Quality Motion Planning,” IEEE Trans. Robot., vol. 32, DOI
10.1109/Tro.2016.2539377, no. 3, pp. 473-483, Jun. 2016.

[28] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli and S. Teller, “Anytime
Motion Planning using the RRT*,” in Proc. IEEE Int. Conf. Robot.
Autom., DOI 10.1109/ICRA.2011.5980479, pp. 1478-1483, May 2011.

[29] O. Salzman and D. Halperin, “Asymptotically-optimal motion planning
using lower bounds on cost,” in Proc. IEEE Int. Conf. Robot. Autom.,
DOI 10.1109/ICRA.2015.7139773, pp. 4167-4172, Jul. 2015.

[30] I. A. Sucan, M. Moll and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robot. Autom. Mag., vol. 19, DOI
10.1109/Mra.2012.2205651, no. 4, pp. 72-82, Dec. 2012.

Jing Xu was born in Yingkou, China. He received
his B.S., M.S. degrees in School of Mechanical
Engineering, Liaoning Shihua University, Fushun,
China, in 2013 and 2016, respectively. He is
currently pursuing the PhD degree with School of
Mechanical Engineering and Automation,
Northeastern University, Shenyang, China. His
research interests include robot kinematics, robot
motion planning, robot control, service robotics
and parallel robot system.

Kechen Song received the B.S., M.S. and Ph.D.
degrees in School of Mechanical Engineering and
Automation, Northeastern University, Shenyang,
China, in 2009, 2011 and 2014, respectively.
During 2018-2019, he was an Academic Visitor in
the Department of Computer Science,
Loughborough University, UK. He is currently an
Associate Professor in the School of Mechanical
Engineering and Automation, Northeastern
University. His research interest covers

vision-based inspection system for steel surface defects, surface
topography, image processing, pattern recognition and robotics.

Defu Zhang received the B.S. degree in School
of Mechanical Engineering and Automation,
Hebei University, Baoding, China, in 2015, and
the M.S. degree in School of Mechanical
Engineering and Automation, Northeastern
University, Shenyang, China, in 2017. He is
currently pursuing the Ph.D. degree with School
of Mechanical Engineering and Automation,
Northeastern University, China. His research
interests include deep learning with sample lack
and semantic segmentation.

Hongwen Dong received the B.S. degree in
School of Mechanical Engineering and Automation,
Liaoning University of Technology, Jinzhou, China,
in 2016, and the M.S. degree in School of
Mechanical Engineering and Automation,
Northeastern University, Shenyang, China, in
2018. He is currently pursuing the Ph.D. degree
with School of Mechanical Engineering and
Automation, Northeastern University, China. His
research interests include deep learning, pattern
recognition and semantic segmentation.

Yunhui Yan received the B.S., M.S. and Ph.D.
degrees in School of Mechanical Engineering and
Automation, Northeastern University, Shenyang,
China, in 1981, 1985 and 1997, respectively. He
has been a teacher in Northeastern University of
China since 1982, and became as professor in
1997. During 1993-1994, he stayed in the Tohoku
National Industrial Research Institute as a visiting
scholar. His research interest covers intelligent
inspection, image processing, pattern recognition
and robotics.

Qinggang Meng (M’06–SM’18)received the B.S.
and M.S. degrees from the School of Electronic
Information Engineering, Tianjin University, China,
and the Ph.D. degree in computer science from
Aberystwyth University, U.K. He is a Professor
with the Department of Computer Science,
Loughborough University, U.K. His research
interests include biologically and psychologically
inspired learning algorithms and developmental
robotics, service robotics, robot learning and

adaptation, multi-UAV cooperation, drivers distraction detection, human
motion analysis and activity recognition, activity pattern detection,
pattern recognition, artificial intelligence, and computer vision. He is a
fellow of the Higher Education Academy, U.K.

	I. INTRODUCTION
	II. Problem Formulation
	III. Informed Anytime Fast Marching Tree
	Algorithm Overview
	B. Hybrid Incremental Search
	C. Dynamic Optimal Search

	IV. Analysis
	A. Probabilistic Completeness
	B. Asymptotic Optimality
	C. Computational Complexity

	V. Experiments
	A. Experiments in OMPL Benchmark
	1) Simulation Setup
	2) Results and Discussion

	B. Experiments on Robot Planning Tasks
	1) Experiment Setup
	2) Results and Discussion

	VI. Conclusion

